
Gurvits & Smith typeset 817 Feb 1, 2005 Permanents

Definite integration and summation are #P-hard
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Abstract — We show that the common symbolic manipulation tasks of computing multiple partial deriva-

tives, definite integration, and definite summation, are #P-hard, i.e., at least as hard as counting the accepting

input strings for any Turing machine that halts in polynomial time. (The “multiple partial derivatives” part

was previously known.)
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1 Permanents, averaging, and partial differentiation

LET A be an n × n matrix

A =









a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann









. (1)

The “permanent” of A is defined by

perA =
∑

σ

a1,σ(1)a2,σ(2) · · · an,σ(n) (2)

where the sum is over the n! permutations σ of {1, 2, ..., n}.
L.G.Valiant [13] showed that computing the permanent of a matrix whose elements lay in the set {−1, 0, 1, 2, 3}

was #P-complete.
We first note that

perA =

[

coeff. of
z1z2 · · · zn in

] n
∏

k=1

(a1kz1 + a2kz2 + · · · + ankzn). (3)

As a consequence, any “averaging process” on the variables z1, z2,..., zn which serves to “cancel out” all the
coefficients in the monomial expansion of the polynomial on the right of (EQ 3), except for the one coefficient
we want, will lead to a formula for the permanent. Special cases of this observation have been discovered (and
rediscovered) previously. For example, “Ryser’s formula” [11]

perA =
1

2n

1
∑

q1=0

1
∑

q2=0

· · ·

1
∑

qn=0

n
∏

k=1





n
∑

j=1

(−1)qj+qkajk



 (4)

involving a sum over 2n binary words q1q2...qn, arises by considering one such averaging process. This sum may be
evaluated in O(n2n) arithmetic operations by traversing the binary words in a “Gray code” order in which any word
differs from its predecessor at exactly one bit.

The point of the Gray code is that each of the n terms in the product may be updated, after changing one bit,
in O(1) steps. Note that in this algorithm, unlike the previous one, the storage requirements are only linear.

Incidentally, a further factor 2 saving in work may be garnered by only using the 2n−1 words with one of the
bits fixed. The only monomials this averaging process could get wrong are ones in which z1 (assuming the bit with
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index 1 is the fixed bit) appears to an odd degree and all the other zj appear raised to an even power. (Remember
that z2

j = 1 if zj = ±1.) But, such monomials cannot arise.
Other averaging processes based on multiple uses of Cauchy’s residue theorem, integration over spheres or radially

symmetric Gaussians, summation over roots of unity forming a regular p-gon (the above was p = 2), integrals over
tori, and so forth could also be used, leading to a large number of possible permanent formulae. One useful trick
when devising such formulae is to let zj = exp(iqj) and constrain qn to equal −

∑n−1
j=1 qj inside the averaging integral

or sum, which causes
∏n

j=1 exp(iqj) to average to 1 and
∏n

j=1 exp(iqj)
mj to average to 0 if the mj are unequal –

precisely the desired effect. An alternative trick is to multiply the product in (EQ 3) by z1z2 · · · zn and then average
~z over any centrally symmetric probability distribution in Rn. The term we want will average out to something
positive since (z1z2 · · · zn)2 is nonnegative, but the other terms will average to 0 because at least one power of at
least one zj must be odd.

A different method of isolating the one coefficient we want is multiple partial differentiation. This leads to:

Theorem 1 (Previously known)
If ajk ∈ {−1, 0, 1, 2, 3}, then evaluating the multiple partial derivative

∂n

∂z1 ∂z2 · · ·∂zn

n
∏

k=1

(a1kz1 + a2kz2 + · · · + ankzn)
∣

∣

~z=~0
. (5)

at the point z1 = z2 = · · · = zn = 0 is #P-complete.

Proof. This is perA. 2

2 The complexity of 1D definite integration

Let p be an integer with |p| ≥ 2. Then we may express the permanent of an n×n matrix A as a 1D definite integral:

perA =
1

2π

∫ 2π

0

n
∏

j=1

(

n−1
∑

k=1

ajk exp(ipk−1θ) + ajn exp(−i
pn − 1

p − 1
θ)

)

dθ. (6)

The point is that this integral averages all the terms in the generating function (EQ 3) to 0, except for the one we
want.

Observe: to make everything real, we can replace every occurence of exp(iα) by its real part cosα and use 1
π

∫ π

0

instead of 1
2π

∫ 2π

0
.

To avoid1 the use of transcendental functions (e.g. cos) or of the transcendental number π as a limit of the integral,
then by using the substitution θ = arctan(2t), dθ = 2/(1 + 4t2)dt, cos θ = (1 − t2)/(1 + t2), sin θ = 2t/(1 + t2),
exp(iqθ) = [(1 + it)/(1 − it)]q we may instead write the integral as a rational function of t integrated from −∞
to +∞ (for an appropriate choice of the branch of arctan). To avoid integrals over infinite intervals, by a further
rational change of variables such as t = s/(1 − s2), dt = (1 + s2)/(1 − s2)2ds we may transform to the finite range
−1 < s < 1.

So, we conclude

Theorem 2 Given a rational function of s (with Gaussian-integer coefficients and integer degrees) determining its
integral over the range −1 < s < 1 is #P-hard. This is true even if the rational function integrand is expressed as a
“straight line code” program, and even if we promise that the value is a positive integer only a polynomial2 number
of bits long, and even if we further promise that running this code at any rational point s in (−1, 1) will run in
polynomial time. 2

On the other hand, the promise problem3 in the theorem is in fact soluble in polynomial time with the aid of an
oracle for #P. Hence

1The reason why we go to extra trouble to make the theorem hold for rational functions is that they are the “simplest” class of
functions that are not trivially integrable. Our point is that if rational functions are hard to integrate, presumbably most everything
else is at least as hard to integrate.

2“Polynomial” in the number of statements in the input straight-line program, which is a list of statements of the form a ← b&c
where a, b, c are variable names or bounded-integer constants and & is one of the four operators {+,−, ∗, /}.

3“Promise problem” is a standard technical term introduced in [4] and further developed in [5]. A famous paper about a promise
problem is [12]. It refers to the notion of allowing the solution procedures for some class of problems only to be required to work on the
subclass of those problems which obey some “promise,” e.g. that the output bit-length will be short. Obviously, solving the full class of
problems is at least as hard as solving the promise-subclass.

DocNumber 2 . 2. 0. 0



Gurvits & Smith typeset 817 Feb 1, 2005 Permanents

Theorem 3 The promise problem of the preceding theorem is #P-complete.

Proof: We need only to show that it is in #P. We take advantage of the fact that integrating a Fourier mode

around the unit circle (e.g.
∫ 2π

0 sin(mθ)dθ = 0) may be done by summation at the vertices of a regular polygon, if
the polygon has n vertices with n ≥ m. In other words, for integrals of this sort, the trapezoid rule is exact if there
are enough trapezoids.4 Hence the integral (EQ 6) is expressible exactly as a finite sum at the vertices of a regular
pn-gon

perA =
1

2πpn

pn
−1
∑

m=0

n
∏

j=1

(

n−1
∑

k=1

ajk exp(2πimpk−1−n) + ajn exp(−2πim
pn − 1

(p− 1)pn
)

)

. (7)

We can ask our #P oracle to compute the number of summands at which bit b of the summand is 1, for all relevant
b (also using bits on the fractional side of the decimal point) there being only a polynomial(n) number of bits that
could matter (due to the promises). From these counts we may deduce the value of the sum (i.e. integral) accurate
to the nearest integer (i.e. exactly). 2

Again, since the integral of EQ 6 is expressible exactly as a finite sum, we conclude

Theorem 4 Doing the definite integral of (EQ 6) (and its equivalent versions discussed above) is #P-complete; so
is its summation version with pn terms to be summed.

The weaker result that determining whether an integral of the form

∫ 2π

0

n
∏

j−1

cos(ajθ)dθ (8)

equals zero is NP-hard, was previously shown by Plaisted [10]. Here the aj are integers represented in binary.
Plaisted’s problem is soluble in “pseudo-polynomial time,” i.e. in polynomial time if the aj are input in unary.

In contrast, our integrals and sums remain #P-complete even if our ajk are input in unary. However, we have
other exponentially large integers (of order pn) in our expression (EQ 6), which certainly couldn’t be input in unary.
These n numbers do have very simple radix-p representations, however. To be precise, the n numbers in question
are 1, p, p2, . . . , pn−1 and −(pn − 1)/(p− 1). If these were written symbolically (as we’ve just written them) then all
input numbers could be unary. Also, if these numbers were computed using straight-line code (or if exponentials
yk for our large integers k were computed using straight-line code) then the straight-line code could “handle the
binary” and then only small numbers would need to occur explicitly, all of which could be input in unary. (And of
course we recommend the simplest choice p = 2 for p.) Incidentally, these n numbers could instead have been chosen
to be any set of n integers summing to 0 and such that the only way to pick n elements (with replacement) from
this set, such that the selected multiset sums to 0, is to pick the entire set.

It remains possible that some other class of integrals than ours is even more difficult than #P-complete.5

3 How hard is it to approximate the permanent?

Consider the problem of approximating the number of satisfying assignments of a boolean formula (the approximate
“#SAT problem”). This is “APX-complete” [2].

4This well known fact underlies the “Discrete Fourier Transform” (which is the same thing as the “fast fourier transform” FFT,
except done slower), and the Euler-Maclaurin summation formula ([1]§23.1.30), and the discrete (i.e. sum) orthogonality relation obeyed
by the Chebyshev polynomials ([1]§22.17). Although the FFT usually is attributed to J.W.Cooley and J.W.Tukey in 1965, it in fact
had been published earlier by G.C.Danielson and C.Lanczos in 1942, and (much) earlier by C.F.Gauss in 1805, who indeed apparently
even used it to fit the trajectories of the asteroids Pallas and Juno. For these historical facts see [6]. The orthogonality relation alone
(i.e. the DFT, as opposed to the FFT – which suffices for our purposes) probably was known to J.B.J.Fourier (1768-1830) himself even
earlier. A trivial proof is as follows: Because the m roots of the polynomial zm − 1 lie at the vertices of a regular m-gon, by considering
the fact that the coefficients of zm−k in this polynomial are exactly 0 for each k = 1, 2, . . . , m − 1 we see successively that the sum of
the kth powers of those roots plainly is exactly 0 for each k = 1, 2, . . . , m − 1. Another trivial proof is simply to observe the rotational
symmetry: the kth powers of the polygon vertices are rotationally symmetrically distributed about 0 and hence sum to 0, except if k is
a multiple of m, when they all are 1 and hence sum to m.

5In fact, the integral
∫

3

0
xN−1dx = 3N /N has a value which requires exponentially many (as a function of the number of bits in N)

bits to express in binary. This sort of triviality is best abolished with the aid of some sort of promise, which is in fact what we did. A
slightly different approach would be, with the aid of the promise that the integral’s value is a rational number, to ask for the value of
that rational modulo some small prime. For example, it is trivial for a Turing machine to evaluate 3N /N mod 5 in a number of steps
polynomial in the bit length of N (use modular arithmetic and “binary powering”). Furthermore, the value of a definite integral of a
rational function between rational bounds is always a short rational linear combination of logarithms of rational numbers, and this fact,
plus modular evaluation of the rationals, could be used to avoid any need for a promise at all. In contrast, prime-modular evaluation of
integer permanents also is #P-complete [14], so that the comparable question about the integrals in theorem 2 is #P-complete.
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We can build a boolean formula with n inputs such that the left n/2 inputs have exactly 0 or 1 satisfying
assignments and such that the right half of the circuit is always satisfied (the full circuit ANDs the left and right
halfs). Then the whole circuit will have either 0 or 2n/2 satisfying assignments. Thus approximating the number of
satisfying assignments to within 2n/2 on an n-input SAT problem is at least as hard as determining whether a SAT
problem on n/2 inputs has a solution, given the promise that it has exactly 1 or 0 solutions.

Valiant [13] showed that #SAT could be reduced in polynomial time to a single #3SAT computation, i.e. (in his
notation from [14]) SAT≤!3SAT. Valiant also found count preserving (except for an easily computed factor of propor-
tionality) reductions to show that SAT≤!HAMILTONIAN CIRCUITS and [14] that 3SAT≤!{−1, 0, 1, 2, 3}PERMANENT.

These problems are complete over an interesting complexity class called “UP” (for promised Unique P). Clearly
P ⊆ UP ⊆ NP . It is usual to conjecture that P 6= UP .

One reason to believe that P 6= UP is that the following problem is in UP, but looks too difficult to be in P:
PROMISE PROBLEM: Does a product of two primes have a factor in a given range?
INSTANCE: An integer N , promised to be of the form N = pq, p ≤ q both prime, and an integer interval [ℓ, u].
QUESTION: Is ℓ ≤ p ≤ u?

Even more convincingly, Valiant and Vazirani have shown [17] that RUP=NP, i.e. if one could detect unique
solutions to NP problems in randomized polynomial time, then RP=NP.

There is some speculation [3] that UP 6= NP , i.e. that the randomness in [17] was essential.
Anyhow, the moral is that

Theorem 5 There exists c > 1 such that it is impossible to approximate permanents with elements in the set
{−1, 0, 1, 2, 3} to within an additive factor ±cL and a multiplicative factor cL (where L is the input length) in
random polynomial time, unless RP=NP. 2

However, it was recently shown [7] that there is a fully polynomial randomized approximation scheme for ap-
proximating permanents of matrices with nonnegative binary-integer entries to within any desired constant factor
1 + ǫ.
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