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Abstract — We attempt to find all implications among

19 commonly used diassociativity, Moufang, Bol, alterna-

tivity and inverse-related properties in loops. There are 6

among these that appear to be valid in finite but not infi-

nite loops. Under that assumption, we completely settle

the problem. We study in detail the apparently-simplest

among the 6 nasty cases: the “LRalt=⇒2SI” question of

whether a left- and right-alternative loop necessarily has

2-sided inverses. We construct an infinite loop in which

this is false. However, X must have a 2-sided inverse in

any LRalt loop with ≤ 185 elements or in which X
n

= 1

with n ≤ 13 (M.K.Kinyon has improved “13” to “31”), re-

sults suggesting this is the case in all finite loops. The

problem of fully resolving this may be the hardest natu-

ral problem in mathematics that is this simply posed.
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1 Introduction

A magma is a set L equipped with a binary operation ab. A
quasigroup is a magma in which there exists a unique solution
x to yx = z (usually denoted x = y\z) and to xy = z (usu-
ally denoted x = z/y). A loop is a quasigroup in which there
exists an identity element e so ex = xe = x for all x ∈ L.
(Colloquially: “a loop is a non-associative group.”)

Sometimes the loop operation is regarded as multiplication (in
which case we usually call the identity 1), other times it is re-
garded as addition (in which case we usually call the identity
0). We shall use both notations in this paper.

Probably the most widely studied properties of loops are:
Group: the property of being a group, i.e. of obeying the

associative law x · yz = xy · z;
Moufang: the Moufang property1 (x · yz)x = xy · zx, equiv-

alent to obeying both the left-Bol x(y · xz) = (x · yx)z
and right-Bol x(yz · y) = (xy · z)y properties.

Lalt: the left-alternative law x · xy = xx · y;
Ralt: the right-alternative law yx · x = y · xx;
Flex: the flexible law xy · x = x · yx;
LIP: the left-inverse-property (1/x) · xy = y;
RIP: the right-inverse-property yx · (x\1) = y;
Antiaut: the law 1/(xy) = (1/y)(1/x) of antiautomorphic

inverses;
2SI: the law of 2-sided inverses 1/x = x\1;
PA: power-associativity (the statement2 that xn is unam-

biguous for all positive integer n); and
3PA: 3-power-associativity xx · x = x · xx;
Diassoc: diassociativity (the statement that any two ele-

ments of L generate a subgroup).

Despite the large amount of study devoted to these proper-
ties, many fundamental questions about them had never been
answered. Foremost among these include

1. Which subsets of these properties imply which others?
2. Is there a finite equational basis for (finite set of equa-

tions implied by and implying) diassociativity?

The latter question is settled in the companion paper [20]:
loop-diassociativity has no finite equational basis. The
present paper attacks the former question.

The attack is initially straightforward: we consider all pos-
sible subsets among these properties and decide which ones
are achievable. Our achievability proofs are simply specific
constructions of finite loops, and our unachievability proofs
are sequences of logical deductions.

However, a surprising development prevents this attack from
attaining victory: it appears there are 6 implications among
properties which are true in all finite loops (so that no finite
counterexample exists) but false in certain infinite loops (pre-
venting any“pure proof”of that implication i.e. via any finite
sequence of deductions in first order logic).

1 There are 4 Moufang identities, all equivalent by lemma 3.1 p.115 of [2]. The other three are x(yz · x)x = xy · zx, (xy · z)y = x(y · zy), and
y(z · yx) = (yz · y)x.

2Warning: Power-associativity is defined slightly differently in the companion paper [20].
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Define a loop to be LR-alternative if it is both L- and R-
alternative, IPLR if it is both LR-alternative and IP, alter-
native3 (Alt) if it is both LR-alternative and flexible, and
IP-alternative if it is both IP and alternative, i.e. both IPLR
and flexible.

Consider the implications in loops in table 1.1. I do not believe
these are the only 6 implications of this finiteness-dependent
kind in loop theory; instead I suspect that the world of loops
is absolutely rife with them.

# implication n
1 LRalt =⇒ 2-sided inverses 185
2 Flexible ∧ Ralt ∧ LIP =⇒ Lalt 38
3 Flexible ∧ Ralt ∧ LIP =⇒ RIP 36
4 Alt ∧ LIP =⇒ IP *
5 Alt ∧ antiaut =⇒ IP 19
6 Lalt ∧ Ralt ∧ RIP =⇒ IP 17

Figure 1.1. 6 implications conjectured to be true in finite
but false in infinite loops. Each of the implications is true
in all loops with ≤ n elements for the value of n tabulated
(proven by exhaustive search using mace4 [10]).

In §4.1 we show statement 1 is false in an infinite loop, so that
no “pure”proof of it can exist. Searches with otter [11] show
there are no short pure proofs of statements 2-6. N

Here is my effort to find the simplest example of a finiteness-
dependent fact about loops:

Theorem 1 (PA=⇒
F

2SI). Power associativity implies 2-

sided inverses in finite loops, but not in infinite loops.

Proof: An element X in a finite loop obeys XXn−1
ℓ = 1 for

some n ≥ 0, so by power-associativity Xn−1
ℓ X = 1 proving X

has a 2-sided inverse X−1 = Xn−1
ℓ . (For exponent notation

and the fact n exists see EQ 12 and lemma 4.) But the infinite
LRalt loop we shall construct in §4.1 is power associative but
lacks 2-sided inverses. �

Obviously, if one of the implications in table 1.1 is false in
some infinite loop, then there cannot be a pure proof of it. It
is less obvious that the reverse is also true:

Theorem 2. If any of the 6 implications in table 1.1 has no
pure proof, then there is a countably-infinite (or finite) loop
in which that implication is violated.

Proof: Follows immediately from “Gödel’s completeness the-
orem for first-order logics” [4][5][7][14]. �

2 Which subsets of properties imply

which?

Any two among {LIP, RIP, antiaut} implies the third4. A
loop with these three properties is said to have the “inverse
property” (IP).5

Then our loop properties obey the inclusions in figure 2.1.

All the inclusion relations in figure 2.1 are well known and/or
easy except for theorem 1 and these three

1. Bol loops are power-associative [18].
2. Moufang loops are diassociative. This is “Moufang’s

theorem” of 1933. Section VII.4 page 117 of [2] proves
the stronger statement that in a Moufang loop, if ab·c =
a · bc then a, b, c generate a subgroup.

3. The question of whether LR-alternative loops have 2-
sided inverses (shown with dashed line in figure) turns
out to be remarkably complicated, and will be discussed
later.

                       Groups
                             

                                       
R-alt  RIP     diassociative   L-Bol  R-Bol
                                         
       IP-alternative     Power-associative
                                         
  Inverse   IPLR    alternative           
  property                                
              LR-alternative              
LIP     RIP                     flexible  
                L-alt  R-alt             
  antiaut                              

                                 
   loops with two-sided-inverses

                        3PA        

  R-Bol                  Moufang loops

Figure 2.1. Taxonomy of loop-type inclusions. (A much
larger version of this taxonomy will be in the upcoming book
[21].) N

In the presence of antiaut, any left-property and its mirror
right-property imply one another, e.g. antiaut causes 2-sided
inverses and causes Lalt to imply Ralt. Also, of course, any
logical statement (such as R-Bol=⇒RIP, proven by Bol [1])
always has exactly the same validity as its mirrored version
(in this case L-Bol=⇒LIP).

Here are statements and proofs of several implications:

1. L-Bol∧Flexible=⇒Moufang. Proof: Simply apply the
flexible identity to the term in parentheses on the right
hand side of the L-Bol identity to get the last Moufang
identity from footnote 1.

2. L-Bol∧Ralt=⇒Moufang. Proof: Rename yx to be Q in
the LBol identity (x · yx)z = x(y · xz) to get xQ · z =
x((Q/x) · xz). Now let y = Q/x to get the Moufang
identity (x · yx)z = x(y · xz).

3Some other authors have used “alternative” to mean what we call “LR-alternative.”
4See EQ 1.4-1.8 page 111 of [2].
5We also mention Osborn’s [15] “Weak Inverse Property” y((xy)\1) = x\1. We have not seen these two remarks previously: WIP together

with any one among {LIP, RIP, antiaut} suffice to imply the full inverse property IP. Also WIP and Lalt together imply that a loop is Ralt.
Another candidate for an implication true in finite but not in infinite loops is that WIP and Lalt together imply IP. This is true in loops with ≤ 11
elements. It appears that our flagship question of whether LRalt−→2SI is unaffected by also assuming WIP and the automorphic inverse property
AI. Exhaustive search shows that every WIP and LRAlt loop with ≤ 45 elements has 2-sided inverses, but otter indicates that there is no short
pure proof of that, and the infinite loop in §4.1 obeys both WIP and AI.
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3. L-Bol∧RIP=⇒Moufang. Because L-Bol=⇒LIP and
LIP∧RIP=⇒IP=⇒antiaut, and antiaut converts L-Bol
into R-Bol.

4. LIP=⇒2SI. Proof: the LIP with y = 1/x gives (1/x) ·
x(1/x) = 1/x; and since xy = x =⇒ y = 1 we have
x(1/x) = 1.

5. Lalt∧WIP=⇒Ralt:

To prove: a loop obeying Lalt xx · y = x · xy and WIP
x((yx)\1) = y\1 must obey Ralt xy · y = x · yy.

(i) From Lalt and the definition of \ we find x ·
x((xx)\y) = y, x((xx)\y) = x\y, and (xx)\y =
x\(x\y).

(ii) From Lalt and the definition of / we find
(y(yx))/x = yy, then by replacing x with y\x we
get (yx)/(y\x) = yy, then by taking x = 1 we get
y/(y\1) = yy.

(iii) From the final identity in i using the above expres-
sion for xx we get (x/(x\1))\y = x\(x\y).

(iv) From the definitions of / and \ we have:
(y/x)\y = x and y/(x\y) = x.
and then by taking y = 1 in these we have:
(1/x)\1 = x and 1/(x\1) = x.

(v) From WIP and \ we have (xy)\1 = (y\(x\1))
from which using the final identity in iv we deduce
xy = 1/(y\(x\1)).

Finale: if Ralt were untrue, i.e. A and B existed
so that (AB)B 6= A · B, then from Lalt and the ex-
pression for BB in ii we would conclude (AB)B 6=
A · B/(B\1), and then by combining this with the con-
clusions of ii, iii, iv, v we could derive the contradiction:
1/(B\(B\(A\1)))\ 6= 1/(B\(B\(A\1))). QED.

The fact that there are no other inclusion relations besides
the ones in the figure is proven by constructing counterexam-
ple loops. (For example, the octonions are Moufang but not
a group.) The ones we tabulate throughout section 3 more
than suffice for that purpose except that there are two in-
stances where we were unsuccessful at constructing either a
finite counterexample or an inclusion proof. These two cases
are shown with dashed lines in figure 2.1: the LRalt=⇒2SI
problem and PA=⇒2SI (settled in theorem 1).

How can we attack the question of which subsets among the
19 properties in figure 2.1 imply which? An equivalent ques-
tion is: which of the 219 = 524288 possible property-subsets
are achievable in loops?

Upon requiring the property subset to obey the inclusions
indicated by both the undashed lines in figure 2.1 and
PA=⇒2SI, the number of possibilities shrinks6 to 324. If
we then also use the fact that antiaut causes any property to
imply its mirror property, it shrinks to 202. If we then also
employ the implications that any two among {LIP, RIP, anti-
aut} implies IP, and that LRalt=Lalt∧Ralt, Alt=LRalt∧flex,
IPalt=alt∧IP=IPLR∧flex, IPLR=IP∧LRalt, and
Moufang=L-Bol∧Ralt=L-Bol∧Flex=L-Bol∧RIP, it shrinks
to 79. Further adjoining all 6 of the implications in table 1.1
would shrink the count to 64. Actually, because some of the
64 sets are there twice (in mirror-duplicated form) there are
really fewer to worry about.

It then becomes a matter of working through the 64 possibili-
ties with the help of mace4 and (my own program) loopbeaut.

In all 64 cases either mace4 was able to create an example
loop, or such an example arises as a direct product of two
mace4 discoveries. The examples are compiled in §3. Hence:

Theorem 3 (Main result). Under the assumption that the
6 implications in table 1.1 hold in finite loops, figure 2.1

1. lists all inclusion-relations among the 19 finite-loop
properties therein;

2. all those inclusions are strict;
3. all 219 possible subsets of these properties are achieve-

able except for those forbidden by the implications listed
throughout the text of this section. In other words, those
implications are the full set; there are no others.

Additional kinds of loops will be permitted if any of the im-
plications in table 1.1 are invalid.

3 Collected counterexample loops

All have been “beautified,” i.e. their elements have been rear-
ranged and renamed in an effort to make the loop’s structure
maximally apparent from its table. Most are minimum pos-
sible cardinality. In all cases the identity element is e = 0.
“Mirror” examples with all left-handed properties changed to
right-handed ones and vice versa, may be got by transposing
the matrix and hence are omitted. Taking the direct prod-
uct of two loops intersects their property-sets. This trick is
very useful both for reducing the number of counterexam-
ples needed, and for constructing counterexamples too large
for brute force computer searching to find. Although we un-
doubtably could have used products more, we have chosen to
present non-product constructions whenever small ones are
available.

* 0 1 2 3 4

0 0 1 2 3 4

1 1 2 4 0 3

2 2 3 1 4 0

3 3 4 0 2 1

4 4 0 3 1 2

Figure 3.1. 5-element loop. Not PA3, 2SI. N

* 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 6 1 0 4 5

3 3 0 1 5 6 2 4

4 4 5 0 6 2 1 3

5 5 6 4 2 3 0 1

6 6 4 5 0 1 3 2

Figure 3.2. 7-element loop. PA3, but not LALT, RALT,
2SI. N

6Shown by exhaustive computer checking of the original 219.
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* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 0 5 2 1 4

4 4 5 0 1 2 3

5 5 4 1 0 3 2

Figure 3.3. 6-element loop. LALT, but not RALT, 2SI.N

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 0 5 4

2 2 5 0 4 1 3

3 3 0 4 5 2 1

4 4 3 5 1 0 2

5 5 4 1 2 3 0

Figure 3.4. 6-element loop. 2SI, but not LIP, RIP, Antiaut,
PA3.N

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 4 0 5 1 3

3 3 5 4 0 2 1

4 4 3 5 1 0 2

5 5 0 1 2 3 4

Figure 3.5. 6-element loop. LIP, but not RIP, Antiaut,
PA3.N

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 4 0 5 1 3

3 3 5 1 0 2 4

4 4 3 5 2 0 1

5 5 0 4 1 3 2

Figure 3.6. 6-element loop. Antiaut, but not LIP, RIP,
PA3.N

* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 5 4 7 6 3 0 1

3 3 6 5 0 7 2 1 4

4 4 3 6 1 0 7 2 5

5 5 4 7 6 1 0 3 2

6 6 7 0 5 2 1 4 3

7 7 0 1 2 3 4 5 6

Figure 3.7. 8-element loop. IP, but not PA3.N

* 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 5 6 1 0 4

3 3 4 1 0 6 2 5

4 4 5 6 1 0 3 2

5 5 6 0 2 3 4 1

6 6 0 4 5 2 1 3

Figure 3.8. 7-element loop. PA3, 2SI, xx = e, but not PA,
LIP, RIP, LALT, RALT, FLEX, Antiaut.N

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 0 3 4 5 2

2 2 3 0 5 1 4

3 3 5 4 0 2 1

4 4 2 5 1 0 3

5 5 4 1 2 3 0

Figure 3.9. 6-element loop. PA, xx = e, but not LIP, RIP,
LALT, RALT, FLEX, Antiaut.N

* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 5 7 6 0 1 4

3 3 5 4 6 1 7 0 2

4 4 7 6 5 0 3 2 1

5 5 6 0 1 7 2 4 3

6 6 4 7 0 2 1 3 5

7 7 0 1 2 3 4 5 6

Figure 3.10. 8-element loop. LIP, PA3, but not PA, RIP,
LALT, RALT, FLEX, Antiaut.N

* 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 0 4 5 6 3

2 2 0 1 6 3 4 5

3 3 4 6 5 2 0 1

4 4 5 3 1 6 2 0

5 5 6 4 0 1 3 2

6 6 3 5 2 0 1 4

Figure 3.11. 7-element loop. PA, LIP, but not RIP, LALT,
RALT, FLEX, Antiaut.N

Construction 3.12. LALT, 2SI, but not PA, LIP, RIP, RALT,
FLEX, Antiaut: Get a (12 · 21 = 252)-element example by
taking direct product of 3.13 with 3.35.

* 0 1 2 3 4 5 6 7 8 9 A B

0 0 1 2 3 4 5 6 7 8 9 A B

1 1 2 3 0 5 6 B 8 9 A 7 4

2 2 3 0 1 6 B 4 9 A 7 8 5

3 3 0 1 2 7 8 9 6 B 4 5 A

4 4 5 6 7 8 9 A B 0 1 2 3

5 5 4 B 6 3 2 1 A 7 8 9 0

6 6 7 8 5 A 3 0 1 2 B 4 9

7 7 6 9 4 1 A 3 2 5 0 B 8

8 8 9 A B 0 1 2 3 4 5 6 7

9 9 8 7 A B 4 5 0 3 2 1 6

A A B 4 9 2 7 8 5 6 3 0 1

B B A 5 8 9 0 7 4 1 6 3 2

Figure 3.13. 12-element loop. PA, LALT, but not LIP, RIP,
RALT, FLEX, Antiaut.N
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Construction 3.14. LIP, LALT, but not PA, RIP, RALT,
FLEX, Antiaut: Get a (6 · 27 = 162)-element example by
taking direct product of 3.15 with 3.49.

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 0 4 5 3

2 2 0 1 5 3 4

3 3 4 5 0 1 2

4 4 5 3 2 0 1

5 5 3 4 1 2 0

Figure 3.15. 6-element loop. PA, LIP, LALT, but not
LBOL, RIP, RALT, FLEX, Antiaut.N

* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 0 5 6 7 4

2 2 3 0 1 6 7 4 5

3 3 0 1 2 7 4 5 6

4 4 5 6 7 0 1 2 3

5 5 4 7 6 3 2 1 0

6 6 7 4 5 2 3 0 1

7 7 6 5 4 1 0 3 2

Figure 3.16. 8-element loop. LBOL, but not RIP, RALT,
FLEX, Antiaut.N

Construction 3.17. RIP, LALT, but not PA, LIP, RALT,
FLEX, Antiaut: Get a (12 · 27 = 324)-element example by
taking direct product of 3.18 with 3.49.

* 0 1 2 3 4 5 6 7 8 9 A B

0 0 1 2 3 4 5 6 7 8 9 A B

1 1 2 3 0 5 6 7 4 A B 9 8

2 2 3 0 1 6 7 4 5 9 8 B A

3 3 0 1 2 B 8 A 9 7 5 4 6

4 4 5 6 7 2 3 0 1 B A 8 9

5 5 9 B 4 8 A 1 2 3 6 0 7

6 6 B 4 A 0 9 2 8 5 7 1 3

7 7 4 A 9 1 B 8 0 6 3 2 5

8 8 A 9 B 7 4 5 6 2 0 3 1

9 9 7 8 5 A 1 B 3 0 2 6 4

A A 6 7 8 3 0 9 B 4 1 5 2

B B 8 5 6 9 2 3 A 1 4 7 0

Figure 3.18. 12-element loop. PA, RIP, LALT, but not LIP,
RALT, FLEX, Antiaut.N

* 0 1 2 3 4 5 6 7 8 9 A B

0 0 1 2 3 4 5 6 7 8 9 A B

1 1 2 3 0 5 6 7 4 A B 9 8

2 2 3 0 1 9 B 8 A 6 4 7 5

3 3 0 1 2 7 4 5 6 B A 8 9

4 4 5 6 7 0 1 2 3 9 8 B A

5 5 6 B 8 1 2 A 9 7 3 4 0

6 6 B 4 A 8 3 9 1 2 0 5 7

7 7 8 A 6 3 9 B 2 5 1 0 4

8 8 A 9 B 6 7 4 5 0 2 1 3

9 9 7 8 5 2 A 0 B 4 6 3 1

A A 9 7 4 B 8 3 0 1 5 2 6

B B 4 5 9 A 0 1 8 3 7 6 2

Figure 3.19. 12-element loop. PA, LIP, RALT, but not RIP,
LALT, FLEX, Antiaut.N

* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 0 7 6

2 2 3 6 7 0 1 4 5

3 3 6 7 0 1 2 5 4

4 4 5 0 1 6 7 2 3

5 5 0 1 6 7 4 3 2

6 6 7 4 5 2 3 0 1

7 7 4 5 2 3 6 1 0

Figure 3.20. 8-element loop. RIP, RALT, but not PA, LIP,
LALT, FLEX, Antiaut.N

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 0 5 3 4

2 2 0 1 4 5 3

3 3 5 4 0 1 2

4 4 3 5 2 0 1

5 5 4 3 1 2 0

Figure 3.21. 6-element loop. PA, RIP, RALT, but not
RBOL, LIP, LALT, FLEX, Antiaut.N

* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 0 7 6 5 4

2 2 3 0 1 6 7 4 5

3 3 0 1 2 5 4 7 6

4 4 5 6 7 2 3 0 1

5 5 6 7 4 1 0 3 2

6 6 7 4 5 0 1 2 3

7 7 4 5 6 3 2 1 0

Figure 3.22. 8-element loop. RBOL, but not LIP, LALT,
FLEX, Antiaut.N

* 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L

0 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L

1 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L 0

2 2 3 4 5 6 7 8 9 A B C D E F G H J K L 0 1

3 3 4 5 6 E 8 F H B 0 D 7 J G A C K L 9 1 2

4 4 5 6 7 8 9 A B C D E F G H J K L 0 1 2 3

5 5 6 E 8 9 A B K D 7 F G H J C L 0 1 2 3 4

6 6 E 8 F A B C L 7 3 G H 9 K D J 1 2 0 4 5

7 7 F G A J C D E 1 2 H 4 K L 0 8 9 3 B 5 6

8 8 9 A B C D E F G H J K L 0 1 2 3 4 5 6 7

9 9 A B 0 D E 3 G H J K L F 1 2 6 4 5 C 7 8

A A B C D 7 F G 3 J K L 0 1 2 H 4 5 6 E 8 9

B B C D E F G H J K L 0 1 2 3 4 5 6 7 8 9 A

C C D 7 J G H 9 5 L F 1 2 3 4 K 0 E 8 6 A B

D D 7 F G H J K 6 0 1 2 3 4 5 L E 8 9 A B C

E E 8 9 H B K L 0 F G 3 J 5 6 7 1 2 A 4 C D

F F G H C K L J 1 2 6 4 5 0 7 8 9 A B 3 D E

G G H J K L 0 1 2 3 4 5 6 7 8 9 A B C D E F

H H J K L 0 1 2 A 4 5 6 E 8 9 3 B C D 7 F G

J J K L 9 1 2 0 4 5 C 7 8 6 A B 3 D E F G H

K K L 0 1 2 3 4 C 6 E 8 9 A B 5 D 7 F G H J

L L 0 1 2 3 4 5 D E 8 9 A B C 6 7 F G H J K
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Figure 3.23. 21-element loop. LRA, 2SI, but not PA, LIP,
RIP, FLEX, Antiaut.N

Construction 3.24. PA, LRA, but not LIP, RIP, FLEX, An-
tiaut: Get a (14 · 12 = 168)-element example by taking direct
product of 3.36 with 3.44.

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 0 5 1 4

3 3 4 5 2 0 1

4 4 5 1 0 3 2

5 5 0 4 1 2 3

Figure 3.25. 6-element loop. FLEX, but not PA, LIP, RIP,
LALT, RALT, Antiaut.N

* 0 1 2 3 4

0 0 1 2 3 4

1 1 0 3 4 2

2 2 4 0 1 3

3 3 2 4 0 1

4 4 3 1 2 0

Figure 3.26. 5-element loop. PA, FLEX, xx = e, but not
LIP, RIP, LALT, RALT, Antiaut.N

Construction 3.27. LIP, FLEX, but not PA, RIP, LALT,
RALT, Antiaut: Get a (12 · 10 = 120)-element example by
taking direct product of 3.28 with 3.47.

* 0 1 2 3 4 5 6 7 8 9 A B

0 0 1 2 3 4 5 6 7 8 9 A B

1 1 2 3 0 7 4 B A 5 6 9 8

2 2 3 0 1 8 9 A B 4 5 6 7

3 3 0 1 2 5 8 9 4 B A 7 6

4 4 5 6 7 0 1 2 3 A B 8 9

5 5 8 9 4 3 0 7 6 1 2 B A

6 6 9 8 B A 7 0 5 2 1 4 3

7 7 4 B A 1 6 5 0 9 8 3 2

8 8 B A 5 6 3 4 9 0 7 2 1

9 9 A 5 6 B 2 3 8 7 0 1 4

A A 7 4 9 2 B 8 1 6 3 0 5

B B 6 7 8 9 A 1 2 3 4 5 0

Figure 3.28. 12-element loop. PA, LIP, FLEX, but not RIP,
LALT, RALT, Antiaut.N

Construction 3.29. LALT, FLEX, but not PA, LIP, RIP,
RALT, Antiaut: Get a (6 · 21 = 162)-element example by
taking direct product of 3.32 with 3.35.

Construction 3.30. PA, LALT, FLEX, but not LIP, RIP,
RALT, Antiaut: Get a (6·14 = 84)-element example by taking
direct product of 3.32 with 3.36.

Construction 3.31. LIP, LALT, FLEX, but not PA, RIP,
RALT, Antiaut: Get a (6 · 27 = 162)-element example by
taking direct product of 3.32 with 3.49.

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 0 3 2 5 4

2 2 4 0 5 1 3

3 3 5 4 0 2 1

4 4 3 5 1 0 2

5 5 2 1 4 3 0

Figure 3.32. 6-element loop. PA, LIP, LALT, FLEX, xx =
e, but not LBOL, RIP, RALT, Antiaut.N

Construction 3.33. RIP, RALT, FLEX, but not PA, LIP,
LALT, Antiaut: Get a (6 · 27 = 162)-element example by
taking direct product of 3.34 with 3.49.

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 0 3 4 5 2

2 2 4 0 5 3 1

3 3 5 1 0 2 4

4 4 2 5 1 0 3

5 5 3 4 2 1 0

Figure 3.34. 6-element loop. PA, RIP, RALT, FLEX,
xx = e, but not RBOL, LIP, LALT, Antiaut.N

* 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L

0 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L

1 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L 0

2 2 3 4 5 6 7 8 9 A B C D E F G H J K L 0 1

3 3 4 5 6 7 8 F A B 0 D E J G H C K L 9 1 2

4 4 5 6 7 8 9 A B C D E F G H J K L 0 1 2 3

5 5 6 7 8 9 A B C D E F G H J K L 0 1 2 3 4

6 6 7 8 F A B C D E 3 G H 9 K L J 1 2 0 4 5

7 7 8 9 A B C D E F G H J K L 0 1 2 3 4 5 6

8 8 9 A B C D E F G H J K L 0 1 2 3 4 5 6 7

9 9 A B 0 D E 3 G H J K L F 1 2 6 4 5 C 7 8

A A B C D E F G H J K L 0 1 2 3 4 5 6 7 8 9

B B C D E F G H J K L 0 1 2 3 4 5 6 7 8 9 A

C C D E J G H 9 K L F 1 2 3 4 5 0 7 8 6 A B

D D E F G H J K L 0 1 2 3 4 5 6 7 8 9 A B C

E E F G H J K L 0 1 2 3 4 5 6 7 8 9 A B C D

F F G H C K L J 1 2 6 4 5 0 7 8 9 A B 3 D E

G G H J K L 0 1 2 3 4 5 6 7 8 9 A B C D E F

H H J K L 0 1 2 3 4 5 6 7 8 9 A B C D E F G

J J K L 9 1 2 0 4 5 C 7 8 6 A B 3 D E F G H

K K L 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J

L L 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K

Figure 3.35. 21-element loop. ALT but not PA, LIP, RIP,
Antiaut. N

* 0 1 2 3 4 5 6 7 8 9 A B C D

0 0 1 2 3 4 5 6 7 8 9 A B C D

1 1 2 3 4 5 6 0 A 7 8 D C 9 B

2 2 3 4 5 6 0 1 D A 7 B 9 8 C

3 3 4 5 6 0 1 2 8 9 C 7 D B A

4 4 5 6 0 1 2 3 C B D 9 7 A 8

5 5 6 0 1 2 3 4 B D A C 8 7 9

6 6 0 1 2 3 4 5 9 C B 8 A D 7

7 7 8 9 A B C D 0 1 2 3 4 5 6

8 8 9 C 7 D B A 3 0 1 6 5 2 4

9 9 C B 8 A D 7 6 3 0 4 2 1 5

A A 7 8 D C 9 B 1 2 5 0 6 4 3

B B D A C 8 7 9 5 4 6 2 0 3 1

C C B D 9 7 A 8 4 6 3 5 1 0 2

D D A 7 B 9 8 C 2 5 4 1 3 6 0
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Figure 3.36. 14-element loop. PA, ALT, but not LIP, RIP,
Antiaut.N

* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 0 7 6

2 2 3 0 1 7 6 4 5

3 3 5 4 6 1 7 0 2

4 4 6 7 2 0 1 5 3

5 5 0 6 7 3 2 1 4

6 6 7 5 0 2 4 3 1

7 7 4 1 5 6 3 2 0

Figure 3.37. 8-element loop. Antiaut, PA3, but not PA,
LIP, RIP, LALT, RALT, FLEX.N

* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 0 5 6 3 7 4

2 2 0 1 4 7 6 3 5

3 3 4 5 0 2 7 1 6

4 4 7 6 1 0 2 5 3

5 5 6 3 7 1 0 4 2

6 6 3 7 2 5 4 0 1

7 7 5 4 6 3 1 2 0

Figure 3.38. 8-element loop. PA, Antiaut, but not LIP, RIP,
LALT, RALT, FLEX.N

* 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 0

2 2 3 5 6 7 8 4 9 0 1

3 3 6 4 5 9 7 8 0 1 2

4 4 7 6 8 0 9 2 1 3 5

5 5 4 8 7 1 0 9 3 2 6

6 6 5 7 9 8 1 0 2 4 3

7 7 8 9 0 2 3 1 5 6 4

8 8 9 0 1 6 2 3 4 5 7

9 9 0 1 2 3 4 5 6 7 8

Figure 3.39. 10-element loop. IP, PA3, but not PA, LALT,
RALT, FLEX.N

* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 0 6 3 7 5 4

2 2 0 1 4 7 6 3 5

3 3 4 7 5 2 0 1 6

4 4 5 3 7 6 2 0 1

5 5 6 4 0 1 3 7 2

6 6 7 5 2 0 1 4 3

7 7 3 6 1 5 4 2 0

Figure 3.40. 8-element loop. PA, IP, but not LALT, RALT,
FLEX.N

Construction 3.41. LRA, Antiaut, but not PA, LIP, RIP,
FLEX: Get a (12 ·21 = 252)-element example by taking direct
product of 3.34 with 3.35.

* 0 1 2 3 4 5 6 7 8 9 A B

0 0 1 2 3 4 5 6 7 8 9 A B

1 1 2 3 0 5 6 7 4 A B 9 8

2 2 3 0 1 6 7 4 5 9 8 B A

3 3 0 1 2 9 B 8 A 4 6 5 7

4 4 5 6 7 2 3 0 1 B A 8 9

5 5 6 9 B 3 8 A 2 0 7 1 4

6 6 9 4 8 0 A 2 B 1 3 7 5

7 7 B 8 6 A 9 3 0 2 5 4 1

8 8 A 7 4 B 0 1 9 5 2 6 3

9 9 4 5 A 1 2 B 8 7 0 3 6

A A 7 B 5 8 1 9 3 6 4 2 0

B B 8 A 9 7 4 5 6 3 1 0 2

Figure 3.42. 12-element loop. PA, LRA, Antiaut, but not
LIP, RIP, FLEX.N

Construction 3.43. IPLR, but not PA, FLEX: Get a (12 ·18 =
216)-element example by taking direct product of 3.44 with
3.49.

* 0 1 2 3 4 5 6 7 8 9 A B

0 0 1 2 3 4 5 6 7 8 9 A B

1 1 2 3 4 5 0 B A 7 6 9 8

2 2 3 4 5 0 1 8 9 A B 6 7

3 3 4 5 0 1 2 7 6 9 8 B A

4 4 5 0 1 2 3 A B 6 7 8 9

5 5 0 1 2 3 4 9 8 B A 7 6

6 6 7 8 9 A B 2 3 4 5 0 1

7 7 8 9 A B 6 5 0 1 2 3 4

8 8 9 A B 6 7 4 5 0 1 2 3

9 9 A B 6 7 8 1 2 3 4 5 0

A A B 6 7 8 9 0 1 2 3 4 5

B B 6 7 8 9 A 3 4 5 0 1 2

Figure 3.44. 12-element loop. PA, IPLR, but not LBOL,
RBOL, FLEX.N

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 0 5 4

2 2 3 4 5 0 1

3 3 0 5 4 1 2

4 4 5 0 1 2 3

5 5 4 1 2 3 0

Figure 3.45. 6-element loop. FLEX, Antiaut, but not PA,
LIP, RIP, LALT, RALT.N

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 0 3 4 5 2

2 2 3 0 5 1 4

3 3 4 5 0 2 1

4 4 5 1 2 0 3

5 5 2 4 1 3 0

Figure 3.46. 6-element loop. PA, FLEX, Antiaut, xx = e,
but not LIP, RIP, LALT, RALT.N
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* 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 0

2 2 3 5 6 7 8 4 9 0 1

3 3 4 6 5 8 7 9 0 1 2

4 4 5 7 8 2 9 0 1 6 3

5 5 6 8 7 9 0 1 3 2 4

6 6 7 4 9 0 1 8 2 3 5

7 7 8 9 0 1 3 2 5 4 6

8 8 9 0 1 6 2 3 4 5 7

9 9 0 1 2 3 4 5 6 7 8

Figure 3.47. 10-element loop. IP, FLEX, but not PA, LALT,
RALT.N

* 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 0 5 3 6 4

2 2 0 1 4 6 3 5

3 3 4 5 6 2 1 0

4 4 6 3 1 5 0 2

5 5 3 6 2 0 4 1

6 6 5 4 0 1 2 3

Figure 3.48. 7-element loop. PA, IP, FLEX, but not LALT,
RALT.N

* 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S

0 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S
1 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S 0

2 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S 0 1
3 3 4 5 6 7 8 J̈ A B M̈ D E F G H 9̈ K L C̈ N P Q R S 0 1 2

4 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S 0 1 2 3
5 5 6 7 8 9 A B C D E F G H J K L M N P Q R S 0 1 2 3 4
6 6 7 8 J̈ A B C D E Q̈ G H 9̈ K L M N P F̈ R S 0 1 2 3 4 5

7 7 8 9 A B C D E F G H J K L M N P Q R S 0 1 2 3 4 5 6
8 8 9 A B C D E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7

9 9 A B M̈ D E Q̈ G H J K L 3̈ N P 6̈ R S 0 1 2 C̈ 4 5 F̈ 7 8
A A B C D E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9
B B C D E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A

C C D E F G H 9̈ K L 3̈ N P Q R S 0 1 2 M̈ 4 5 6 7 8 J̈ A B
D D E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C

E E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D
F F G H 9̈ K L M N P 6̈ R S 0 1 2 3 4 5 Q̈ 7 8 J̈ A B C D E

G G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F
H H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G
J J K L C̈ N P F̈ R S 0 1 2 M̈ 4 5 Q̈ 7 8 9 A B 3̈ D E 6̈ G H

K K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J
L L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K

M M N P Q R S 0 1 2 C̈ 4 5 6 7 8 J̈ A B 3̈ D E F G H 9̈ K L
N N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M
P P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N

Q Q R S 0 1 2 3 4 5 F̈ 7 8 J̈ A B C D E 6̈ G H 9̈ K L M N P
R R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q

S S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R

Figure 3.49. The unique (< 36)-element IPALT but not PA
loop. (Not PA since 1+8=9 6=J=3+6). Entries a ∗ b not agree-
ing with integer addition a + b mod 27 have been decorated
with umlauts (M̈ versus M). Note that these exceptions occur
only on the index-3 subgrid and that the diagonal entries a+a,
the first row and column 0 + a = a + 0, and the antidiagonal
(−a) + a = 0 never are umlauted. This loop has 27 elements
and is commutative, Lalt, Ralt, Flexible, LIP, RIP, antiaut,
but not power-associative, L-Bol, nor R-Bol. N

* 0 1 2 3 4 5 6 7 8 9 A B C D E F G H

0 0 1 2 3 4 5 6 7 8 9 A B C D E F G H

1 1 2 3 4 5 0 F H E C G D 7 9 A 8 6 B

2 2 3 4 5 0 1 8 B A 7 6 9 H C G E F D

3 3 4 5 0 1 2 E D H G F C B 7 6 A 9 8

4 4 5 0 1 2 3 A 9 6 B 8 7 D H F G E C

5 5 0 1 2 3 4 G C F D E H 9 B 8 6 A 7

6 6 D 8 C A H 7 0 B 4 9 2 F G 5 3 1 E

7 7 G B F 9 E 0 6 2 A 4 8 3 1 H C D 5

8 8 C A G 6 D B 2 9 0 7 4 E F 1 5 H 3

9 9 E 7 H B F 4 A 0 8 2 6 1 5 C D 3 G

A A H 6 D 8 C 9 4 7 2 B 0 G E 3 1 5 F

B B F 9 E 7 G 2 8 4 6 0 A 5 3 D H C 1

C C A H 6 D 8 5 G 1 E 3 F 2 0 7 9 B 4

D D 8 C A H 6 3 E 5 F 1 G 0 4 9 B 7 2

E E 7 G B F 9 D 3 C 1 H 5 A 8 2 0 4 6

F F 9 E 7 G B H 1 D 5 C 3 8 6 0 4 2 A

G G B F 8 E 7 C 5 3 H D 1 6 A 4 2 0 9

H H 6 D 9 C A 1 F G 3 5 E 4 2 B 7 8 0

Figure 3.50. 18-element loop. PA, IPALT, but not LBOL,
RBOL, DIA.N

* 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 0 3 2 7 9 8 4 6 5

2 2 3 0 1 9 8 7 6 5 4

3 3 2 1 0 8 7 9 5 4 6

4 4 7 9 8 0 6 5 1 3 2

5 5 9 8 7 6 0 4 3 2 1

6 6 8 7 9 5 4 0 2 1 3

7 7 4 6 5 1 3 2 0 9 8

8 8 6 5 4 3 2 1 9 0 7

9 9 5 4 6 2 1 3 8 7 0

Figure 3.51. Unique 10-element Steiner loop. DIA, Commu-
tative, xx = e, but not LBOL, RBOL. The 12 Steiner triples

are the rows, columns, and generalized diagonals of
(

123
456
789

)

. N

* 0 1 2 3 4 5 6 7 8 9 A B

0 0 1 2 3 4 5 6 7 8 9 A B

1 1 2 0 5 3 4 8 6 7 B 9 A

2 2 0 1 4 5 3 7 8 6 A B 9

3 3 4 5 0 1 2 9 B A 6 8 7

4 4 5 3 2 0 1 B A 9 8 7 6

5 5 3 4 1 2 0 A 9 B 7 6 8

6 6 7 8 9 B A 0 1 2 3 5 4

7 7 8 6 B A 9 2 0 1 5 4 3

8 8 6 7 A 9 B 1 2 0 4 3 5

9 9 A B 6 8 7 3 5 4 0 1 2

A A B 9 8 7 6 5 4 3 2 0 1

B B 9 A 7 6 8 4 3 5 1 2 0

Figure 3.52. Unique 12-element non-associative Moufang
loop. N

Figure 3.53.

* 0 1

0 0 1

1 1 0

The 2-element group. N
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4 Do LRalt loops have 2-sided in-

verses?

The question of whether LRalt loops have 2-sided inverses
sounds innocent. But it ushers us into a hurricane of com-
plexity.

In §4.1 we shall see that there are countably-infinite LRalt
loops without 2-sided inverses. However, there are no con-
tinuum-infinite analytically-smooth ones, since Sabanin [19]
showed that analytic LRalt loops are diassociative.

In §4.2 we examine the evidence suggesting that inverses are
always 2-sided in any finite LRalt loop.

In §4.5 we suggest that the LRalt=⇒2SI problem may actu-
ally be among the hardest mathematical problems that are
this simply posed.

4.1 A countably infinite LRalt loop without
2-sided inverses

All the elements of the loop may be defined in terms of 6
particular elements we call e, s, and G0, G1, G2, G3.

The loop will obey Lalt xx ·y = x ·xy, and Ralt x ·yy = xy ·y.
The identity element is e so that xe = ex = x for all x. The
special element s (which also may stand for either s ign or
swap) obeys

• xs = sx (s commutes with everything);
• s · s = e (s is self-inverse; consequently sk = s or e if k

is odd or even respectively);
• Hence as a consequence of Lalt, ss·x = s·sx = s·xs = x,

and as a consequence of Ralt, x · ss = xs · s = sx · s = x
(thus multiplication by s is a self-inverse operation);

• if xy = z then sx · sy = z and sx · y = x · sy = sz,
(multiplication by s has interesting “pairing”effect; also
s associates with everything);

• if xy = 1 and zx = 1 then either y = z or {ys = sy = z
and zs = sz = y} (if x has two unequal one-sided in-
verses, then s-multiplication interchanges them);

• either xy = yx or xy = yxs (near-commutativity).

G0, G1, G2, G3 obey

G0 = sG2 = G2s, G2 = sG0 = G0s, (1)

G1 = sG3 = G3s, G3 = sG1 = G1s (2)

and
GaGa+1 mod 4 = e (3)

so that each of them has two distinct 1-sided inverses.

The full set of elements of the loop are

{Gn
0 , Gm

1 , Gn
2 , Gm

3 , sG2n
0 , sG2n

1 , e, s}, n, m ≥ 1, m odd.
(4)

The reason we said that m had to be odd was to prevent
element-duplication, because G2k

2 = G2k
0 and G2k

1 = G2k
3 if

k ≥ 0. (Similarly, Gm
0 s = Gm

2 and Gm
1 s = Gm

3 if m is odd.)

The remaining effects of multiplying these elements by s are
covered by the facts that s associates and commutes with ev-
erything and that

Gm
2 = sGm

0 = Gm
0 s, Gm

0 = sGm
2 = Gm

2 s, (5)

Gm
3 = sGm

1 = Gm
1 s, Gm

1 = sGm
3 = Gm

3 s (6)

for all odd m ≥ 1.

The effects of multiplying Ga powers by each other are (where
n, m, j, k ≥ 0 always denote integers)

Gj
aGk

a = Gj+k
a , (7)

Gj
0G

k
2 = Gk

2Gj
0 = Gj+k

0 sk, (8)

Gj
1G

k
3 = Gk

3Gj
1 = Gj+k

1 sk, (9)

Gm
0 Gn

1 =







Gn−m
1 if m ≤ n

Gm−n
0 if m ≥ n

(10)

Gm
1 Gn

0 =







Gn−m
0 sm if m ≤ n

Gm−n
1 sn if m ≥ n

(11)

It is now a straightforward matter to see that both left- and
right-division are uniquely defined, so that we indeed have a
loop, and that Lalt and Ralt indeed are obeyed.

Power-associativity is obeyed. The antiautomorphic inverse
property (x\1)(y\1) = (yx)\1 is false in this loop. Indeed we
do not have any antiautomorphism, nor does the loop obey
LIP nor RIP, since any of these would have caused 2-sided
inverses.

However, the following three maps all are automorphisms:
x → 1/x (which maps Ga → Ga−1 mod4), x → x\1 (which
maps Ga → Ga+1mod 4) and x → 1/(1/x) (or x → (x\1)\1,
which in this loop happens to be the same map; note that this
map is involutive) which swaps Ga ↔ Ga+2 mod4.

Osborn’s [15] weak inverse property y((xy)\1) = x\1 is
obeyed in this loop; thus both WIP and the automorphic in-
verse property hold, which is often called the crossed inverse
property CIP.

An A-loop is a loop whose inner mappings (i.e the identity-
preserving permutations of the loop’s elements induced by
compositions of left- and/or right-multiplications) all are au-
tomorphisms. Our infinite loop is not an A-loop because its
inner mapping x → xG0 · G1 is not an isomorphism.

4.2 Do finite LRalt loops have 2-sided in-
verses?

Exhaustive searches with mace47 show that every LRalt loop
(indeed, every LRalt magma with \-division and x1 = x) with
≤ 185 elements has 2-sided inverses.

Define
Xn

ℓ

def
= X(X(X(X . . . X)))

︸ ︷︷ ︸

n X’s in all

, (12)

i.e. Xn
ℓ denotes the result of starting with 1 and doing a left-

multiplication by X repeatedly n times. (It was this leftward
kind of exponentiation that was intended in the abstract.) We
shall later also have use of Xn

r , which is defined similarly but
using r ight-multiplication; and we shall use Xn without any
subscript when we intentionally wish to leave its parenthe-
sization ambiguous.

7It is necessary to modify the source code to permit loops with over 100 elements. Mace4 reached 185 in only 1 day and then stopped because
it ran out of memory.
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Lemma 4 (Exponents of finite loops exist). Let X be
an element of a finite loop L. Then there exists a positive in-
teger n, called its “left-exponent,” such that Xn

ℓ = 1. Further,
there exists N (the “left-exponent of the loop”) such that for
all U ∈ L, UN

ℓ = 1.

Proof: The repeated left-multiplication process must by
finiteness ultimately repeat a value. Suppose the first repeat
is Xa

ℓ = Xb
ℓ with 0 ≤ a < b. Then Xa

ℓ = XZ and Xb
ℓ = XY

by the loop postulates imply Y = Z, which would represent an
earlier repeat and thus a contradiction unless a = 0. There-
fore we conclude that every X ∈ L obeys Xn

ℓ = 1 for some
positive integer n (possibly depending on X) no greater than
the cardinality of L. The exponent N of the loop is then the
least common multiple of all of these n. �

Remark. We could also define right-exponents similarly. We
also could take N to be the LCM of the left- and right-
exponents of all the loop elements if we instead wanted to
get a “two-sided exponent” for the loop.

Let us now discuss the nature of otter’s proofs for small
n, and more generally, the question of what a proof that
LRalt=⇒2SI in finite loops must be like (if it exists).

Consider some loop element X . Suppose for some integer
n ≥ 1 we have Xn

ℓ = 1. In a finite loop such an n always
exists. We then have X ·Xn−1

ℓ = 1. The Lalt and Ralt prop-
erties imply that X has a two sided inverse if and only if they
imply that Xn−1

ℓ X = 1.

Lemma 5 (LRalt=⇒2SI if n ≤ 6). Any element X in
an LRalt magma obeys X · Xn−1

ℓ = Xn−1
ℓ · X, for each

n = 1, 2, 3, 4, 5, 6.

Proofs: (where =
R

means “= due to Ralt,” etc.)

n=1,2: Trivially X = X and XX = XX .
n=3: 1 = X · XX =

R
XX · X .

n=4: 1 = X(X · XX) =
R

XX · XX =
L

(XX · X)X =
R

(X · XX)X .
n=5: 1 = X(X [X ·XX ]) =

L
XX ·[X ·XX ] =

R
XX ·[XX ·X ] =

L

(XX · XX)X =
L

(X [X · XX ])X .

n=6: 1 = X(X [X(X · XX)]) =
L

XX · [X(X · XX)] =
L

XX ·

[XX ·XX ] =
L

[XX ·XX ] ·XX =
R

[(XX ·X)X ] ·XX =
R

([(XX · X)X ]X)X =
R

[(XX · X) · XX ]X =
R

[(X · XX) ·

XX ]X =
R

[X(XX · XX)]X =
L

[X(X [X · XX ])]X . �

Sketches of alternate proofs. It is also possible to prove
something more general than the n = 4 case by showing the
identity

(x · xy)y = x(x · yy) (13)

and than the n = 5 case by showing

(x · x(xx))y = x · x(x · xy). (14)

The n = 6 case may be proven by showing the identities

(x · yy)y =
R

(xy · y)y =
R

xy · yy, (15)

xy · (y · y(yy)) = (x · y(y · yy))y (16)

then letting y = x in the latter and applying Lalt to its left
hand side. (All 4 of these identities arise solely from the LRalt
axioms.) �

One might now conjecture that “the pattern continues” in the
sense that we somehow may always convert X · Xn−1

ℓ into
Xn−1

ℓ X by“playing with parentheses,” i.e. by using the LRalt
magma axioms only, without even requiring an identity ele-
ment or a quasigroup. But that conjecture fails at the very
next case n = 7.

Lemma 6 (Which loop axioms are needed?). Any proof
that LRalt=⇒2SI will require the following axioms that go be-
yond magmas: the loop axioms that 1 is a left-identity, and
that at least one kind of division (x/y or x\y) exists.8

Proof: The proof consists of the counterexamples in figures
4.2 and 4.3. (We have also previously seen examples of loops
with one-sided alternativity but without 2-sided inverses, so
that both Ralt and Lalt are needed.)

We now point out that ex = x (left-identity) in an LRalt
magma with one-sided (/ only) division implies xe = x (two-
sided identity): we have (y/x) · xx = yx by Ralt, so that
(y/e)e = ye so that y/e = y = ye by the definition of /. �

* 0 1 2 3 4

0 4 0 0 0 1

1 0 1 2 3 4

2 2 2 3 1 2

3 3 3 1 2 3

4 1 4 4 4 0

Figure 4.1. 5-element LRalt magma with 2-sided identity
e = 1 and with 1-sided, but not 2-sided, division. Exhaus-
tive search with mace4 shows that any element X in any
cardinality-n LRalt magma with identity and (≥ 1)-sided di-
vision must have a two sided inverse if 1 ≤ n ≤ 38. N

* 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L

0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L 0

1 2 3 4 5 6 7 8 9 A B C D E F G H J K L 0 1
2 3 4 5 D 7 8 G A B C 6 E F 9 H J K L 0 1 2

3 4 5 6 7 8 9 A B C D E F G H J K L 0 1 2 3
4 5 D 7 8 9 A J C 6 E F G H B K L 0 1 2 3 4

5 D 7 8 9 A B K 6 E F G H J C L 0 1 2 3 4 5
6 E F 9 H B C D 0 1 G 3 J K L 7 8 2 A 4 5 6
7 8 9 A B C D E F G H J K L 0 1 2 3 4 5 6 7

8 9 A B C D E F G H J K L 0 1 2 3 4 5 6 7 8
9 A B C 6 E F 2 H J K L 0 1 G 3 4 5 D 7 8 9

A B C D E F G H J K L 0 1 2 3 4 5 6 7 8 9 A
B C 6 E F G H 4 K L 0 1 2 3 J 5 D 7 8 9 A B
C 6 E F G H J 5 L 0 1 2 3 4 K D 7 8 9 A B C

D 7 8 G A J K L E F 2 H 4 5 6 0 1 9 3 B C D
E F G H J K L 0 1 2 3 4 5 6 7 8 9 A B C D E

F G H J K L 0 1 2 3 4 5 6 7 8 9 A B C D E F
G H J K L 0 1 9 3 4 5 D 7 8 2 A B C 6 E F G

H J K L 0 1 2 3 4 5 6 7 8 9 A B C D E F G H
J K L 0 1 2 3 B 5 D 7 8 9 A 4 C 6 E F G H J
K L 0 1 2 3 4 C D 7 8 9 A B 5 6 E F G H J K

L 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L

Figure 4.2. 21-element LRalt quasigroup in which 0 ∗ 06
ℓ =

0 ∗ 5 = 6 6= D = 5 ∗ 0 = 06
ℓ ∗ 0. This is in fact a loop with

identity element L. N

8That is, among the usual loop axioms alone, we cannot omit the demand that at least one kind of division exists, and we cannot omit the
demand that the quantity 1 such that x

−1
x = 1 defines left-inverses, must in fact be a left-identity. However, we might, conceivably, be able to

replace these “non-omittable” axioms with some other, less-usual, statement.
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* 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 1

2 2 3 4 5 6 7 1 2

3 3 4 5 6 0 1 2 3

4 4 5 6 7 1 2 3 4

5 5 6 0 1 2 3 4 5

6 6 0 1 2 3 4 5 6

7 7 1 2 3 4 5 6 0

Figure 4.3. 8-element magma with identity e = 0 but with-
out left- or right-division. Obeys LRalt but 3 ∗ 36

ℓ = 3 ∗ 4 =
0 6= 7 = 4 ∗ 3 = 36

ℓ ∗ 3 so 2SI is false. N

Nevertheless, the conjecture is true if n = 2k+1 or n = 2k+2:

Lemma 7 (LRalt=⇒2SI if Xn
ℓ = 1 where n − 2k = 1, 2).

If n = 2k + 1 or n = 2k + 2 then each element X in an LRalt
magma obeys XXn−1

ℓ = Xn−1
ℓ X.

Proof: Consider the expression

X(X [X(X [X · · ·Xy])]) (17)

where the number of X ’s is 2k. By using Lalt in a top-down
manner to pair up X ’s this becomes

= XX · (XX · [XX · (XX · · · [XX · y])]). (18)

Now by again using Lalt in a top-down manner to pair up
XX ’s this becomes

= X4
c · (X4

c · [X4
c · (X4

c · · · [X4
c · y])]) (19)

where X4
c here denotes XX ·XX . Now by again using Lalt in

a top-down manner to pair up X4
c ’s to get X8

c ’s, which here
denotes (XX · XX)(XX · XX), we get

= X8
c · (X8

c · [X8
c · (X8

c · · · [X8
c · y])]) (20)

and so on, until ultimately we have

= X(2k)
c · y (21)

where X
(2k)
c is X(2k) parenthesized in the manner of a

complete depth-k binary tree.

We now use the equality of EQs 17 and 21 in the cases y = X
and y = 1. The result is that XXn−1

ℓ = Xn−1
ℓ X if n = 2k +1.

To now consider n = 2k + 2, let y = XX and find that EQ

17 is just Xn
ℓ while EQ 21 is X

(2k)
c · XX . This by Ralt is

X
(2k)
c X · X and by the preceding result about 2k + 1 this is

just Xn−1
ℓ X . �

“Mirrorable” n: Define n to be mirrorable if Xn
ℓ = Xn

r in
an LRalt loop, or magma, or whatever algebraic structure we
are talking about at the moment of use.

Lemma 8. If n is mirrorable in LRalt magmas, then so is
2n.

Proof: By making an Lalt pass, X2n
ℓ = (XX)n

ℓ By assump-
tion this is (XX)n

r which by an Ralt pass is X2n
r . �

Consequently, by induction, powers of 2 are mirrorable. A
more general statement is

Lemma 9. If n = 2k + 2j, then n is mirrorable in LRalt
magmas.

Proof: When n = 2k + 1 lemma 7 shows that Xn
ℓ = Xn−1

ℓ X .
But since n − 1 is a power of 2, lemma 9 shows this is
= Xn−1

r X = Xn
r .

When n = 2k + 2 lemma 7 shows that Xn
ℓ = Xn−2

ℓ · XX .
But since n − 2 is a power of 2, lemma 9 shows this is
= Xn−2

r · XX =
R

Xn−2
r X · X = Xn

r .

We may indeed use lemma 9 to double 2k−j + 1 repeatedly j
times to get that 2k+2j is mirrorable for any j with 0 ≤ j ≤ k.
�

Lemma 10. Let n > 1 be odd. A necessary condition that ei-
ther X ·Xn−1

ℓ = Xn−1
ℓ X or that n be mirrorable, in any LRalt

magma, is that n divide some 2k +2j with 0 ≤ j ≤ k. For the
former problem, it is necessary in addition that 0 ≤ j < k if
k ≥ 2. These conditions in general remain necessary even if
the LRalt magma is known to have an identity element e and
it is known that Xn

ℓ = e.

Proof: Since n > 1 is odd, for any a, b > 0 with a + b = n we
have, without loss of generality, 0 < a < b. We here are asking
that an expression of form XaXb be equal to an expression
of form XbXa. Under Lalt and Ralt we can transform XaXb

to X2aXb−a and XbXa to Xb−aX2a, but no other changes to
(a, b) are possible. If the magma has an identity element e,
we have the additional option of multiplying some subexpres-
sion by e (where there may be many forms of Xkn that are
equivalent to e), or of recognizing that some subexpression
is equivalent to e and therefore removing it. These opera-
tions change neither a nor b modulo n. We thus are asking
that 1 be connected to −1 modulo n by a chain of doublings.
For this to happen it is necessary that 2k ≡ −2j mod n for
some 0 ≤ j ≤ k, i.e. that n divide some number of the form
2k + 2j. Finally, to see that e = Xn

ℓ = Xn−1
ℓ X will not

happen in general if n = 2k ≥ 8, note that we know that
Xn

ℓ = Xn
r = Xn−1

r X , so that if the magma supports cancel-
lation we would have to have Xn−1

r = Xn−1
ℓ . That, however,

violates the very necessary condition we have just proven, if
n ≥ 8 is a power of 2, and indeed in figure 4.2 we gave a loop
counterexample. �

The above lemmas show that the following n with 1 ≤ n ≤ 20
are mirrorable: 1,2,3,4,5,6,8,9,10,12,16,18,20, while the fol-
lowing n are not mirrorable in general LRalt magmas: 7,15.
Further, 7 is not even mirrorable in LRalt loops due to the
21-element counterexample in figure 4.2. Mace4 also found ex-
plicit LRalt magmas with 1 in which 11,13, are not mirrorable.
Nevertheless, I conjecture that 11 and 13 are mirrorable in
magmas with right-division (exhaustive searches show that
any counterexample must have > 185 elements) and indeed
that:

Conjecture 11 (Mirrorability). An integer n > 0 is mir-
rorable in an LRalt magma with right-division if n divides
some number of the form 2k + 2j where 0 ≤ j ≤ k.

Lemma 12. Let n be the least common multiple of the left-
and right-exponents of an element X in an LRalt loop, i.e. let
n > 0 be the least integer such that Xn

ℓ = Xn
r = 1. (If the

loop is finite, such an n always exists.) Let g, j, k ≥ 0 and let
m = 2j [2k + 1] − gn > 0. Then Xm

ℓ = Xm
r .
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Proof: 2j[2k + 1] is mirrorable by previous results, and then
we may simply “chop off” g chunks of n X ’s from the prod-
ucts Xn

ℓ and Xn
r on the grounds that multiplying by 1 has no

effect. �

Lemma 7 suffices to get quite far.

Lemma 13. If n > 0 is any integer which divides some num-
ber of the form 2k+2, then 1 = X ·Xn−1

ℓ implies 1 = Xn−1
ℓ ·X

in an LRalt magma with identity.

In particular, this criterion includes

1. All primes not congruent to 7 mod 8 (but primes con-
gruent to 7 mod 8 are excluded),

2. All n which factor into primes congruent to 3 mod 8
(for example n = 99 = 3 · 3 · 11),

3. Among the n with 2 ≤ n ≤ 20, precisely the following:
2, 3, 5, 6, 9, 10, 11, 13, 17, 18, 19.

Proof: Because Xn
ℓ = 1 implies that Xkn

ℓ = 1 we have that
Xkn−1

ℓ = Xn−1
ℓ so that it suffices to prove Xkn−1

ℓ X = 1. In
other words, “if it works for some multiple kn of n, then it
works for n.” We now sketch the proofs of the specific cases:

1. We have already dealt with p = 2. So let p be an
odd prime. Then it follows from Gauss’s quadratic reci-
procity theorem that some power of 2 is congruent to
−1 mod p, i.e. p divides 2k + 1 for some k, if and only
if p is not congruent to 7 mod 8.

2. If n factorizes into primes congruent to 3 mod 8, then
some power of 2 is congruent to −1 mod n because 2k

will do where k is the least common multiple of the in-
dividual k’s; note this will always be an odd multiple of
each.

3. 26 + 2 = 66 = 2 · 3 · 11, 27 + 2 = 130 = 2 · 5 · 13,
210 +2 = 2 ·9 ·19, 213 +2 = 2 ·17 ·241. But 7 and hence
14 are excluded by claim#1; 8, 12, 16, and 20 obviously
cannot divide any 2k + 2; finally 15 does not divide any
2k + 1 because 3|(2k + 1) only when k is odd, whereas
5|(2k + 1) only when k ≡ 2 mod 4.

�

The criterion of lemma 13 admits a fairly large set of integers
n. The number of primes not congruent to 7 mod 8 below
x is asymptotic to 0.75x/ lnx. The set of n with 1 < n < x
which factor into primes congruent to 3 mod 8 is asymptotic
to Cx(ln x)−0.75 for some positive constant C.

However, figure 4.3 makes it clear that arguments such as
these, which only employ the axioms of a magma with 1, ul-
timately cannot suffice; quasigroup axioms (the existence of
division) must play a role even when n = 7.

With the aid of otter, I was able to prove that any X obey-
ing Xn

ℓ = 1 in an LRalt loop has a 2-sided inverse, for each
n with 1 ≤ n ≤ 20 with the possible exception of 15. More
precisely, of the cases n = 7, 8, 12, 14, 16, 20 not already cov-
ered by preceding results: we shall soon describe the proof
for n = 7, and the cases 8, 12, 16, 20 all were proven by otter

from the left-identity 1x = x and LRalt magma axioms alone,
with no quasigroup axioms being needed. That suggests

Conjecture 14. If n divides some number of the form
2k + 2j where 0 ≤ j < k, then each element X in an
LRalt magma with left-identity obeying XXn−1

ℓ = e neces-
sarily obeys Xn−1

ℓ X = e.

(Incidentally, it is not hard to prove that the sets of numbers
obeying the conditions in conjectures 11 and 14, while infinite,
contain arbitrarily large “gaps.”)

Finally, neither otter nor I were able to handle n = 14, 15,
directly, although 14 eventually succumbed to an indirect at-
tack. Specifically, we shall provide proofs for 14 and 15 under
the assumption of conjecture 11. Later otter was able to set-
tle that conjecture in 13-case, providing a proof for n = 14.

Unfortunately, otter’s proofs get more and more complicated
with increasing n and lack any recognizable pattern.

Otter produced a spectacularly complicated 88-step proof for
the case n = 7. Otter is a computerized deduction engine by
W.McCune. One may input axioms to it (e.g. the LRalt
and loop axioms) and ask to to prove some desired conclusion
(e.g. that 1/x = x\1). In some cases, otter will succeed
in finding a proof; in others it will run out of time or mem-
ory. Sometimes otter can be far inferior to a human math-
ematician. Other times – favorable circumstances are when
there are few axioms and little human-exploitable “structure”
– otter seems to achieve vastly superhuman deductive power.
This is one of them: otter found its proof for the case n = 7
in 17 seconds, and similar proofs for all cases we’ve mentioned
combined in under 10 minutes. I do not believe any human
can match that performance9. Indeed, this human was un-
able even to fully understand otter’s n = 7 proof. Even
single deductive steps in an otter proof can be quite non-
trivial, e.g. “paramodulations” with many parameters. For
example, according to otter’s notion of a “single step,” set-
tling the case n = 6 (as we did above) requires only 2 steps!
Thus really, otter’s “88-step” proof perhaps would be more
properly regarded as a 200-300 step proof.

Nevertheless, the honor of humanity ultimately partially re-
asserted itself when I produced the following much simpler
n = 7 proof. It comes quite easily once one adopts the goal of
incorporating both the identity element 1, and cancellation,
into the proof, in the simplest possible manner.

n=7: To prove 1 = z7
ℓ implies z6

ℓ z = 1 in an LRalt loop, we
begin by multiplying both sides of the former equation by z
on the left to get z = z8

ℓ . By the equality of EQs 17 and
21 when y = 1 and k = 3, it follows that z8

ℓ is equal to its
mirror, so that z = ([(zz)z · z]z · z)z · z. Now cancel z’s to get
1 = ([(zz)z · z]z · z)z, i.e. we have proven z7

ℓ = z7
r if 1 = z7

ℓ .
This reduces our task to proving that z6

ℓ = z6
r , i.e. proving

that 6 is mirrorable – but we already know that from lemma
9. �

n=8: We provide an extremely sparse sketch of otter’s spec-
tacularly complicated 40-step proof10 that A8

ℓ = 1 implies
A7

ℓA = 1 in an LRalt magma with left-identity 1 (i.e. 1x = x
for all x).

9A famous case was the solution of the open “Robbins problem” by McCune’s other deduction engine EQP [13], which on contemporary
computers would take about 1 day. I defy any human to solve the Robbins problem in anywhere near 1 day.

10Although otter’s proof definitely may be simplified if we allow ourselves additional loop axioms, I have been unable to produce a truly simple
proof, nor have I been able to simplify it at all in the absence of additional axioms.
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First otter derived the following 5 identities from the LRalt
axioms alone:

[x · y(y · yy)]y = xy · [y(y · yy)] (22)

[(x · xy)(x[x · yy])]y = (x · xy)[(x · xy) · yy] (23)

[xy · (x · yy)]y = xy · [xy · yy] (24)

[x · x(x · xy)]y = x · x[x(x · yy)] (25)

x3
ℓx

5
ℓ = x8

ℓ . (26)

Various facts are true about A which are not true for gen-
eral x. For example, A · 1 = A, even though we had only
assumed 1 was a left identity. This arises from the identity
x · x(x · x[x · x(x · xy)]) = x8

ℓy (which is a special case of the
proof of lemma 7) by using y = x = A to get A9

ℓ = A8
ℓA and

then recognizing the left hand side as A · 1 and the right as
1 · A = A.

Note that we derived A1 = A by starting with some generally
true identity applied to A, left-multiplying various subexpres-
sions by some form of 1 = A8, rearranging parentheses, and
then recognizing certain other subexpressions as forms of 1
and hence removing them. Otter used this same strategy (but
in more complicated ways) to find A3

ℓA
3
ℓ = A6

ℓ , A4
ℓA

3
ℓ = A7

ℓ ,
A6

ℓA
6
ℓ = A4

ℓ , A5
ℓA

6
ℓ = A3

ℓ , A3
ℓA

6
ℓ · A3

ℓA
4
ℓ = 1, A3

ℓA
6
ℓ = A,

A3
ℓA

4
ℓ = A7

ℓ , and the goal of the proof, namely A7
ℓA = A8

ℓ = 1
(as well as many other, less simply expressible, claims). All of
these are true for A but are unobtainable (in LRalt magmas
with left-identity) for general x.

The finale of otter’s proof is as follows. It manages to ob-
tain A3

ℓA
6
ℓ · A3

ℓA
4
ℓ = 1. It then uses this fact (among others)

to derive A3
ℓA

4
ℓ = A7

ℓ . From this we know (A3
ℓA

4
ℓ )A = A7

ℓA.
Now applying EQ 23 with x = y = A to the left hand side
gives A8

ℓ = A7
ℓA and upon recognizing the left hand side as 1

we have proven the theorem. �

n=14: To prove X14
ℓ = 1 implies X13

ℓ X = 1 in an LRalt
loop in which 13 is mirrorable: Left-multiply by XX and
employ Lalt to get X16

ℓ = 1. Now by repeated uses of Lalt
to pair X ’s into XX ’s, then into X4

c ’s, and so on we have
X16

ℓ = (XX)8ℓ = (X4
c )4ℓ = (X8

c )2 = X16
c so that now by a

mirror argument X16
ℓ = X16

c = X16
r = X14

r X ·X =
R

X14
r ·XX .

Now since X14
ℓ = 1 we have that XX = X14

r ·XX so that by
cancelling the XX we get X14

r = 1. This is X13
r X = 1. Now

if 13 is mirrorable, then X13
r = X13

ℓ and we are done. �

Remark. M.K.Kinyon (private communication) was able to
get otter to prove 11 and 13 mirrorable in loops. That com-
pletes the n = 14 proof above.

n=15: To prove X15
ℓ = 1 implies X14

ℓ X = 1 in an LRalt loop
in which 29 is mirrorable: It suffices to prove X29

ℓ X = 1.
Left-multiply by XX and employ Lalt to get X32

ℓ = 1. Now
by repeated used of Lalt to pair X ’s into XX ’s, then into
X4

c ’s, and so on we get (similarly to in the previous proof)
X32

ℓ = X32
c = X32

r = X30
r X · X =

R
X30

r · XX . Now since

X30
ℓ = 1 we have that XX = X30

r ·XX so that by cancelling
the XX we get X30

r = 1. This is X29
r X = 1. If 29 is mir-

rorable then X29
r = X29

ℓ and we are done. �

It probably would be possible to establish fully rigorously the
fact that elements X with left-exponent n in an LRalt loop

have 2-sided inverses for both n = 14 and 15, by: writing a
special purpose computer program based on standard graph-
connectivity algorithms and the graph-reformulation of the
problem in §4.3. If so, then the next open case would be
n = 21.

4.3 The graph picture

Let Gn be the graph whose vertices consist of the ordered
rooted binary trees with n leaves. Each such tree represents a
way to parenthesize Xn. The edges of Gn join two trees which
are equivalent by an Lalt or Ralt re-parenthesization. The
question of whether an element X in an LRalt magma obeys
Xn−1

ℓ X = Xn
ℓ , is then equivalent to the question of whether

these two particular vertices of Gn lie in the same connected
component. This view enables proving certain statements eas-
ily, which otherwise might have been difficult. For example

Lemma 15 (Unboundedly large proof lengths). The
graphical distance (number of edges in the shortest path be-
tween) these two vertices is at least n − 2.

Proof: Each n-leafed ordered roted binary tree may be re-
garded as the planar dual of a triangulation by diagonals of
a convex (n + 1)-gon with one distinguished “root edge” AB.
Each associative transformation corresponds to erasing a di-
agonal and then retriangulating the resulting quadrilateral-
shaped hole using the other diagonal (and LRalt transforma-
tions are a subset of associative transformations). Originally
all the n − 2 diagonals have endpoint A but none have end-
point B, but in the final state, the opposite is true, so at least
n − 2 transformations have to be made. �

Now define the graph G′

n, which has an infinite number of
vertices, as follows. Its vertices correspond to the ordered
rooted binary trees with kn leaves for all k = 1, 2, 3, . . . . In
addition to the LRalt edges we mentioned before, there are
also edges linking kn-leaf trees to (k + 1)n-leaf trees, corre-
sponding to multiplying some subexpression on the left or
right by Xell

n = 1. The question of whether an element X
in an LRalt magma with 2-sided identity 1 has a 2-sided in-
verse, given that Xn

ℓ = 1, is then equivalent to the question
of whether two particular vertices of G′

n lie in the same con-
nected component.

Finally, define the graph G′′

n. It too has an infinite num-
ber of vertices. Now they correspond to the unordered pairs
of ordered rooted binary trees with finite numbers of leaves.
In addition to the LRalt and 1-multiplication edges we men-
tioned before (now operating independently on each member
of the pair; so far G′′

n = G′

n × G′

n but we shall now adjoin an
infinite number of additional edges), there are also edges link-
ing pairs of trees to pairs of trees each with K extra leaves,
corresponding to multiplying both entire expressions by some
common K-term expression on the left or right, i.e. (in the
latter case) to adjoining new roots to both trees in the pair,
whose two left children are the two old trees, and whose two
right children are two copies of the same new K-leaf tree.
The question of whether an element X in an LRloop has a
2-sided inverse, given that Xn

ℓ = 1, is then equivalent to the
question of whether the two particular vertices of G′′

n repre-
senting {Xn

ℓ , 1} and {Xn−1
ℓ X, 1} lie in the same connected

component.
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Connectivity questions about infinite graphs or directed
graphs are notoriously difficult, the “3x+1 problem” [8] being
a simple prototypical unsolved example.

4.4 Possible 87% solution?
The situation so far is: The LRalt=⇒2SI problem remains
unsolved in finite loops. Even for the (apparently simpler)
problem in magmas with left-identity, or magmas with right-
division, we have been unable to completely settle the ques-
tions of which n cause Xn

ℓ = Xn
r and which n cause Xn

ℓ = 1
to imply Xn−1

ℓ X = 1. But we have made some progress by
finding some necessary, and some sufficient conditions.

We now sketch a plan of argument which may enable an
“87.5% solution.” A conjecture essentially the same as the
standard conjecture that there are an infinite number of twin
primes (p, p + 2) is

Conjecture 16 (Modified twin-primes). Given an odd
number n, there are an infinite set of numbers k such that
4kn + 1 and 4kn − 1 both are prime.

Theorem 17. Let n > 0 be an integer not divisible by 8.
Under the assumption of conjectures 11 and 16: in an LRalt
magma with identity 1 and with right-division, Xn = 1 im-
plies that X has a 2-sided inverse.

Proof: Let n not be divisible by 8. Find k so kn±1 both are
prime, and kn ≡ 4 mod 8. Then observe that by conjecture 11
and some easy number theory, that kn±1 both are mirrorable.
Left-multiply Xkn

ℓ by X to get Xkn+1
ℓ = Xkn+1

r = X . Right-
cancel the X ’s to get Xkn

r = 1 = Xkn−1
r X . Now mirror to

get = Xkn−1
ℓ X = 1 = Xn−1

ℓ X .

This would totally settle the LRalt=⇒2SI problem except for
those n that are multiples of 8 (i.e. 7/8 = 0.875 of all n).
Further, some of the multiples of 8 could be handled by con-
jecture 14; the first open case would be n = 56. �

This proof-plan, of course, still would only provide “87% of a
solution,” and cannot be implemented at least until the 3000-
year-open twin-primes problem is settled! In that case, theo-
rem 17 merely would serve to reduce the problem to proving
conjectures 14 and especially 11. Still, that reduction ar-
guably is progress since these conjectures concern LRalt mag-
mas with left-identity and right-division, respectively (i.e. not
both at the same time) – more simply defined objects than
LRalt loops.

4.5 Candidate for the most frustrating prob-
lem in the world?

Connoisseurs of frustration prefer their problems to be sim-
ple to state, mathematically natural, and difficult to solve.
According to these criteria, the LRalt=⇒2SI problem is a
surprising contender for the world’s top problem!

The LRalt=⇒2SI problem has an extremely simple statement:

Given that, in a finite universe,

1 ∗ x = x; (x/y) ∗ y = x; (27)

x∗(y∗y) = (x∗y)∗y; (y∗y)∗x = y∗(y∗x); (28)

does it then follow that x ∗ (1/x) = 1?

For the purpose of comparison, consider these 8 problems:

1. What is the maximum number of faces of a convex poly-
hedral space-tiler?

2. Does white always win a perfectly played chess game?
3. Are there an infinite number of primes of the form

n2 + 1?
4. The “3x+1 problem” [8] of whether the iteration on the

positive integers x → 3x + 1 if x is odd, x → x/2 if x is
even, will always reach the value x = 1, no matter what
the starting point.

5. Does P=NP? [6]
6. Are all planar graphs 4-colorable? [17]
7. Classify all finite simple groups. [3]
8. Do there exist integers a, b, c > 0 and n > 2 with

an + bn = cn? [22]

All are mathematically natural with the possible exception of
the 3x + 1 problem.

The first 5 problems (with the possible exception of the first,
which has not been worked on as hard as the others) seem
well beyond reach, whereas problems 6-8 have (with immense
effort) been solved, albeit the solutions of 6 and 7 seem suffi-
ciently long that it is almost beyond the ability of any single
human to check them.

Although all of these problems may seem simple to state,
one gets a more precise perspective on the “simplicity” of a
problem statement after gaining some experience inputting
problems to computerized proof- and counterexample-finding
tools such as otter and mace. If one is only allowed to em-
ploy first order logic and must describe the problems to a
completely naive listener, i.e. such a computerized system,
then the descriptions of each of these 8 problems are longer
– usually much longer – than ours. (Just getting started by
defining notions such as “integers,” “primes,” “space-tiling,”
“convex polyhedron,” “planar graphs,” “classification of sim-
ple groups,”“P,”“NP,” or the rules of chess already takes too
long.) Probably the simplest 3 to state among our 8 are the
3x + 1 problem, the classification of simple groups, and Fer-
mat’s last theorem, but neither is as simple as ours.

It is notoriously hard to estimate the difficulty of open prob-
lems, and especially so in the case of LRalt=⇒2SI since
M.K.Kinyon11 and I are the only people who have tried hard
on it. But let us say this.
1. The (n2 + 1)-primes and twin-primes problems have been
open for thousands of years, which makes them harder than
the last three (solved) problems. We’ve seen reasons to sus-
pect the LRalt=⇒2SI problem may be at least equally hard
as them and the 3x + 1 problem.
2. Everybody is confident they already know the answers to
problems 3,4,5 but merely cannot prove it; and it is trivial
to investigate 3,4, and 8 up into the billions by computer.
In contrast, computer investigation of LRalt=⇒2SI is much
harder and I feel considerably less confidence I know its an-
swer.
3. Solving chess is a “trivial”problem in that it may be solved
purely mechanically by a finite case analysis using only first
order logic. But (we have shown in §4.1) no such solution is

11See §5.
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possible for LRalt=⇒
F

2SI (at least, if the answer, as expected,

is positive).

Should the joys of LRalt=⇒2SI pall, the reader is reminded
that there are 5 more problems of the same ilk listed in table
1.1. All of them are only slightly harder to state and they
may be even harder to solve.

5 Acknowledgements and updates

J.D.Phillips found a few of the loop examples in §3, or closely
related loops, before I did, and also did some work on the
LRalt=⇒2SI problem, which I had dropped on him rather
like a bomb. We both initially thought that problem was
going to be far easier than it now seems. It was he who ini-
tially suggested the conjecture that its solution depends on
the finiteness of the loop; all my investigations so far support
that.

P.Vojtechovsky spotted a typo which caused the appearance
of a serious error. (It has been corrected.)

It should be obvious that I have made heavy use of
mace4 [10] and otter [11]. My own programs loop-

beaut.c and setinc.c, are available on my website
http://math.temple.edu/∼wds/homepage/works.html.
The use of all 4 of these programs (albeit setinc.c would
have to be appropriately modified) should enable future in-
vestigations of the same sort to proceed in a highly automated
way.

Updates: M.K.Kinyon and I (with computer aid) have ex-
amined the LRalt=⇒2SI problem further since this paper was
written and conceivably a followup paper by one or both of us
may appear. In particular Kinyon showed that X must have
a 2-sided inverse in an LRalt loop if Xn = 1 with n ≤ 31 and
n = 63 and I showed this is true in an LRalt magma with
2-sided identity if n divides any number of the form 2k + 2.

Kinyon suggests that a possibly-productive line of attack on
the LRalt=⇒2SI problem would be to prove in an LRalt
magma with 1x = x1 = x, that An

ℓ = 1 implies these two
equations hold: An−1

ℓ A2 = A, An−1
ℓ (An−1

ℓ A) = An−1
ℓ . If the

magma has right or left cancellation (respectively), then these
respectively would suffice to imply 2SI. Kinyon also suggests
investigating An−1

ℓ An−1
ℓ = An−2

ℓ and (An−1
ℓ )n−1

ℓ = A.
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