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Abstract —
19 commonly used diassociativity, Moufang, Bol, alterna-

We attempt to find all implications among

tivity and inverse-related properties in loops. There are 6
among these that appear to be valid in finite but not infi-
nite loops. Under that assumption, we completely settle
the problem. We study in detail the apparently-simplest
among the 6 nasty cases: the “LRalt=—2SI” question of
whether a left- and right-alternative loop necessarily has
2-sided inverses. We construct an infinite loop in which
this is false. However, X must have a 2-sided inverse in
any LRalt loop with < 185 elements or in which X" =1
with n < 13 (M.K.Kinyon has improved “13” to “31”), re-
The
problem of fully resolving this may be the hardest natu-
ral problem in mathematics that is this simply posed.

sults suggesting this is the case in all finite loops.
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1 Introduction

A magma is a set L equipped with a binary operation ab. A
quasigroup is a magma in which there exists a unique solution
x to yxr = z (usually denoted z = y\z) and to zy = z (usu-
ally denoted 2 = z/y). A loop is a quasigroup in which there
exists an identity element e so ex = xe = z for all x € L.
(Colloquially: “a loop is a non-associative group.”)

Sometimes the loop operation is regarded as multiplication (in
which case we usually call the identity 1), other times it is re-
garded as addition (in which case we usually call the identity
0). We shall use both notations in this paper.

Probably the most widely studied properties of loops are:

Group: the property of being a group, i.e. of obeying the
associative law x - yz = zy - 2;

Moufang: the Moufang property! (x-yz)r = xy - 22, equiv-
alent to obeying both the left-Bol z(y - 22) = (x - yz)z
and right-Bol z(yz - y) = (zy - 2)y properties.

Lalt: the left-alternative law z - zy = zx - y;

Ralt: the right-alternative law yx -« = y - zz;

Flex: the flexible law zy - x = x - yz;

LIP: the left-inverse-property (1/x) - zy = y;

RIP: the right-inverse-property yz - (z\1) = y;

Antiaut: the law 1/(zy) = (1/y)(1/z) of antiautomorphic
inverses;

28SI: the law of 2-sided inverses 1/z = z\1;

PA: power-associativity (the statement? that z" is unam-
biguous for all positive integer n); and

3PA: 3-power-associativity zx - x = z - zx;

Diassoc: diassociativity (the statement that any two ele-
ments of L generate a subgroup).

Despite the large amount of study devoted to these proper-
ties, many fundamental questions about them had never been
answered. Foremost among these include

1. Which subsets of these properties imply which others?
2. Is there a finite equational basis for (finite set of equa-
tions implied by and implying) diassociativity?

The latter question is settled in the companion paper [20]:
loop-diassociativity has no finite equational basis. The
present paper attacks the former question.

The attack is initially straightforward: we consider all pos-
sible subsets among these properties and decide which ones
are achievable. Our achievability proofs are simply specific
constructions of finite loops, and our unachievability proofs
are sequences of logical deductions.

However, a surprising development prevents this attack from
attaining victory: it appears there are 6 implications among
properties which are true in all finite loops (so that no finite
counterexample exists) but false in certain infinite loops (pre-
venting any “pure proof” of that implication i.e. via any finite
sequence of deductions in first order logic).

I There are 4 Moufang identities, all equivalent by lemma 3.1 p.115 of [2]. The other three are z(yz - x)x = zy - 2z, (zy - 2)y = z(y - 2y), and

y(z - yz) = (yz - y)=.

2Warning: Power-associativity is defined slightly differently in the companion paper [20].
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Define a loop to be LR-alternative if it is both L- and R-
alternative, IPLR if it is both LR-alternative and IP, alter-
native® (Alt) if it is both LR-alternative and flexible, and
IP-alternative if it is both IP and alternative, i.e. both IPLR
and flexible.

Consider the implications in loops in table 1.1. I do not believe
these are the only 6 implications of this finiteness-dependent
kind in loop theory; instead I suspect that the world of loops
is absolutely rife with them.

# | implication n

1 | LRalt = 2-sided inverses 185
2 | Flexible A Ralt A LIP — Lalt | 38
3 | Flexible A Ralt A LIP = RIP | 36
4 | Alt ALIP = 1IP *

5 | Alt A antiaut — IP 19
6 | Lalt A Ralt A RIP = IP 17

Figure 1.1. 6 implications conjectured to be true in finite
but false in infinite loops. Each of the implications is true
in all loops with < n elements for the value of n tabulated
(proven by exhaustive search using mace4 [10]).

In §4.1 we show statement 1 is false in an infinite loop, so that
no “pure” proof of it can exist. Searches with otter [11] show
there are no short pure proofs of statements 2-6. A

Here is my effort to find the simplest example of a finiteness-
dependent fact about loops:

Theorem 1 (PA:F>2SI). Power associativity implies 2-

sided inverses in finite loops, but not in infinite loops.

Proof: An element X in a finite loop obeys XX?*1 =1 for
some n > 0, so by power-associativity XEFIX = 1 proving X
has a 2-sided inverse X' = X;'"'. (For exponent notation
and the fact n exists see EQ 12 and lemma 4.) But the infinite
LRalt loop we shall construct in §4.1 is power associative but
lacks 2-sided inverses. O

Obviously, if one of the implications in table 1.1 is false in
some infinite loop, then there cannot be a pure proof of it. It
is less obvious that the reverse is also true:

Theorem 2. If any of the 6 implications in table 1.1 has no
pure proof, then there is a countably-infinite (or finite) loop
in which that implication is violated.

Proof: Follows immediately from “Godel’s completeness the-
orem for first-order logics” [4][5][7][14]. O

2  Which subsets of properties imply
which?

Any two among {LIP, RIP, antiaut} implies the third*. A
loop with these three properties is said to have the “inverse
property” (IP).?

Then our loop properties obey the inclusions in figure 2.1.

All the inclusion relations in figure 2.1 are well known and/or
easy except for theorem 1 and these three

1. Bol loops are power-associative [18].

2. Moufang loops are diassociative. This is “Moufang’s
theorem” of 1933. Section VII.4 page 117 of [2] proves
the stronger statement that in a Moufang loop, if ab-c =
a - be then a, b, c generate a subgroup.

3. The question of whether LR-alternative loops have 2-
sided inverses (shown with dashed line in figure) turns
out to be remarkably complicated, and will be discussed

later.
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Figure 2.1. Taxonomy of loop-type inclusions. (A much
larger version of this taxonomy will be in the upcoming book

[21].) A

In the presence of antiaut, any left-property and its mirror
right-property imply one another, e.g. antiaut causes 2-sided
inverses and causes Lalt to imply Ralt. Also, of course, any
logical statement (such as R-Bol==RIP, proven by Bol [1])
always has exactly the same validity as its mirrored version
(in this case L-Bol=-LIP).

Here are statements and proofs of several implications:

1. L-BolAFlexible=Moufang. Proof: Simply apply the
flexible identity to the term in parentheses on the right
hand side of the L-Bol identity to get the last Moufang
identity from footnote 1.

2. L-BolARalt=Moufang. Proof: Rename yx to be @ in
the LBol identity (x - yx)z = z(y - 2) to get zQ - z =
z((Q/x) - xz). Now let y = Q/x to get the Moufang
identity (z - yz)z = z(y - x2).

3Some other authors have used “alternative” to mean what we call “LR-alternative.”

4See EQ 1.4-1.8 page 111 of [2].

5We also mention Osborn’s [15] “Weak Inverse Property” y((zy)\1) = z\1. We have not seen these two remarks previously: WIP together
with any one among {LIP, RIP, antiaut} suffice to imply the full inverse property IP. Also WIP and Lalt together imply that a loop is Ralt.
Another candidate for an implication true in finite but not in infinite loops is that WIP and Lalt together imply IP. This is true in loops with < 11
elements. It appears that our flagship question of whether LRalt——2SI is unaffected by also assuming WIP and the automorphic inverse property
Al. Exhaustive search shows that every WIP and LRAIt loop with < 45 elements has 2-sided inverses, but otter indicates that there is no short

pure proof of that, and the infinite loop in §4.1 obeys both WIP and Al
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3. L-BolARIP=-Moufang. Because L-Bol=—-LIP and
LIPARIP=—=IP=—=-antiaut, and antiaut converts L-Bol
into R-Bol.

4. LIP==-2SI. Proof: the LIP with y = 1/z gives (1/x) -
x(1/x) = 1/x; and since xy = ¢ = y = 1 we have
x(1/z) = 1.

5. LaltAWIP=-Ralt:

To prove: a loop obeying Lalt zz -y = x - xy and WIP
2((yz)\1) = y\1 must obey Ralt zy -y = x - yy.

(i) From Lalt and the definition of \ we find z -
z((zz)\y) = y, =((zx)\y) = z\y, and (zz)\y =
o\ (z\y).

(ii) From Lalt and the definition of / we find
(y(yz))/x = yy, then by replacing z with y\z we
get (yx)/(y\x) = yy, then by taking x = 1 we get
y/(\1) = yy.

(iii) From the final identity in i using the above expres-
sion for zz we get (z/(x\1))\y = x\(z\y).

(iv) From the definitions of / and \ we have:

(y/x)\y =z and y/(z\y) = 2.

and then by taking y = 1 in these we have:

(1/z)\1 =z and 1/(z\1) = .

(v) From WIP and \ we have (zy)\l = (y\(z\1))
from which using the final identity in iv we deduce
zy =1/(y\(z\1)).

Finale: if Ralt were untrue, i.e. A and B existed
so that (AB)B # A - B, then from Lalt and the ex-
pression for BB in ii we would conclude (AB)B #
A-B/(B\1), and then by combining this with the con-
clusions of ii, iii, iv, v we could derive the contradiction:

L/(B\(B\(A\)))\ # 1/(B\(B\(4\1))). QED.

The fact that there are no other inclusion relations besides
the ones in the figure is proven by constructing counterexam-
ple loops. (For example, the octonions are Moufang but not
a group.) The ones we tabulate throughout section 3 more
than suffice for that purpose except that there are two in-
stances where we were unsuccessful at constructing either a
finite counterexample or an inclusion proof. These two cases
are shown with dashed lines in figure 2.1: the LRalt=-2SI
problem and PA=2ST (settled in theorem 1).

How can we attack the question of which subsets among the
19 properties in figure 2.1 imply which? An equivalent ques-
tion is: which of the 2'9 = 524288 possible property-subsets
are achievable in loops?

Upon requiring the property subset to obey the inclusions
indicated by both the undashed lines in figure 2.1 and
PA==-2SI, the number of possibilities shrinks® to 324. If
we then also use the fact that antiaut causes any property to
imply its mirror property, it shrinks to 202. If we then also
employ the implications that any two among {LIP, RIP, anti-
aut} implies IP, and that LRalt=LaltARalt, Alt=LRaltAflex,
TPalt=alt A\IP=IPLRAflex, IPLR=IPALRAalt, and
Moufang=L-BolARalt=L-BolAFlex=L-BolARIP, it shrinks
to 79. Further adjoining all 6 of the implications in table 1.1
would shrink the count to 64. Actually, because some of the
64 sets are there twice (in mirror-duplicated form) there are
really fewer to worry about.

6Shown by exhaustive computer checking of the original 219.
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It then becomes a matter of working through the 64 possibili-
ties with the help of mace4 and (my own program) lLoopbeaut.

In all 64 cases either mace4 was able to create an example
loop, or such an example arises as a direct product of two
mace4 discoveries. The examples are compiled in §3. Hence:

Theorem 3 (Main result). Under the assumption that the
6 implications in table 1.1 hold in finite loops, figure 2.1

1. lists all inclusion-relations among the 19 finite-loop
properties therein;

2. all those inclusions are strict;

3. all 2'° possible subsets of these properties are achieve-
able except for those forbidden by the implications listed
throughout the text of this section. In other words, those
implications are the full set; there are no others.

Additional kinds of loops will be permitted if any of the im-
plications in table 1.1 are invalid.

3 Collected counterexample loops

All have been “beautified,” i.e. their elements have been rear-
ranged and renamed in an effort to make the loop’s structure
maximally apparent from its table. Most are minimum pos-
sible cardinality. In all cases the identity element is e = 0.
“Mirror” examples with all left-handed properties changed to
right-handed ones and vice versa, may be got by transposing
the matrix and hence are omitted. Taking the direct prod-
uct of two loops intersects their property-sets. This trick is
very useful both for reducing the number of counterexam-
ples needed, and for constructing counterexamples too large
for brute force computer searching to find. Although we un-
doubtably could have used products more, we have chosen to
present non-product constructions whenever small ones are
available.

*x101234
0101234
1112403
2123140
3134021
4140312
Figure 3.1. 5-element loop. Not PA3, 2SI1. A
*1 0123456
010123456
111234560
212361045
313015624
414506213
515642301
616450132

Figure 3.2. 7-element loop. PA3, but not LALT, RALT,

2S1. A
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Figure 3.5. 6-element loop. LIP, but not RIP, Antiaut,
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012345
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5
6
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Figure 3.11. 7-element loop. PA, LIP, but not RIP, LALT,

RALT, FLEX, Antiaut.A

*
0
1
2
3
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5

Figure 3.6. 6-element loop. Antiaut, but not LIP, RIP,

PA3.a
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Construction 3.14. LIP, LALT, but not PA, RIP, RALT,

FLEX, Antiaut: Get a (6 - 27

taking direct product of 3.15 with 3.49.

01234567
01234567
12345076
23670145

36701254

50167432
67452301

*
0
1
2
3

012345
012345
120453
201534
345012

445016723

5
6

534120

*
0
1
2
3

41453201

5

7174523610

PA, LIP, LALT, but not

Figure 3.15. 6-element loop.
LBOL, RIP, RALT, FLEX, Antiaut.A

Figure 3.20. 8-element loop. RIP, RALT, but not PA, LIP,

LALT, FLEX, Antiaut.A
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012345
012345
120534
201453
354012
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*
0
1
2
3

41435201

54763210

5

67452301

PA, RIP, RALT, but not

Figure 3.21. 6-element loop.
RBOL, LIP, LALT, FLEX, Antiaut.A

*
0
1
2
3

4145670123
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Figure 3.16. 8-element loop. LBOL, but not RIP, RALT,

FLEX, Antiaut.A
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Construction 3.17.

5
6

Figure 3.18. 12-element loop. PA, RIP, LALT, but not LIP,

RALT, FLEX, Antiaut.A
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8
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0123456789AB
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12305674AB9S8
23019B8A6475
30127456BAS8Y9
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B|BCDEFGHJKLO0O1234567829A
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A|lA9T74B8301526
B|B459A01837¢62
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Figure 3.23. 21-element loop. LRA, 2SI, but not PA, LIP, Figure 3.32. 6-element loop. PA, LIP, LALT, FLEX, zx =
RIP, FLEX, Antiaut.A e, but not LBOL, RIP, RALT, Antiaut.A

Construction 3.24. PA, LRA, but not LIP, RIP, FLEX, An-
tiaut: Get a (14-12 = 168)-element example by taking direct
product of 3.36 with 3.44.

Construction 3.33. RIP, RALT, FLEX, but not PA, LIP,
LALT, Antiaut: Get a (6 - 27 = 162)-element example by
taking direct product of 3.34 with 3.49.

* 1 012345
0012345 «1 019345
11123450
25123051 4 0/ 012345
313459201 11103452
4las51032 21240531
51504123 31351024
41425103
Figure 3.25. 6-element loop. FLEX, but not PA, LIP, RIP, 5534210

LALT, RALT, Antiaut.A

x| 01234 Figure 3.34. 6-element loop. PA, RIP, RALT, FLEX,
0lo1234 rx = e, but not RBOL, LIP, LALT, Antiaut.A
1110342

2124013

3132401

4143120

Figure 3.26. 5-element loop. PA, FLEX, xx = e, but not
LIP, RIP, LALT, RALT, Antiaut.A

Construction 3.27. LIP, FLEX, but not PA, RIP, LALT,
RALT, Antiaut: Get a (12 - 10 = 120)-element example by
taking direct product of 3.28 with 3.47.
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Figure 3.28. 12-element loop. PA, LIP, FLEX, but not RIP,
LALT, RALT, Antiaut.A Figure 3.35. 21-element loop. ALT but not PA, LIP, RIP,

Construction 3.20. LALT, FLEX, but not PA, LIP, RIp, Antiaut- 4
RALT, Antiaut: Get a (6 - 21 = 162)-element example by

taking direct product of 3.32 with 3.35. * 1 0123456789 ABCD
Construction 3.30. PA, LALT, FLEX, but not LIP, RIP, 0/0123456789ABCD
RALT, Antiaut: Get a (6-14 = 84)-element example by taking 111234560A78DC9B
direct product of 3.32 with 3.36. 212345601DA7B98C
Construction 3.31. LIP, LALT, FLEX, but not PA, RIP, 31345601289C7DBA
RALT, Antiaut: Get a (6 - 27 = 162)-element example by 414560123CBDOI7AS
taking direct product of 3.32 with 3.49. 5/5601234BDACSETI
61 60123459CB8ADTY

x|012345 7/ 789ABCD0123456

0012345 8|89 C7DBA30166524

11103254 9| 9CB8AD76304215

21240513 A|A78DC9B1250643

3/354021 B|BDACS8795462031

41435102 C|CBD97A84635102

5521430 D|/DA7B98C2541360
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0123456789 AB
0123456789AB
12305674AB9S8
2301674598BA
30129B8A465T7

569B38A20T714

6 9480A2B1375

7TB86A9302541

8A74B019526 3

945A12B87036

*
0
1
2
3

Figure 3.36. 14-element loop. PA, ALT, but not LIP, RIP,

Antiaut.A

01234567
01234567
12345076
23017645
35461702

4145672301BAS8Y9

5
6
7
8
9

50673214

67502431

A|A7B581936420
B|B8A974563102

74156320

*
0
1
2
3

4146720153

5
6
7

Figure 3.42. 12-element loop. PA, LRA, Antiaut, but not

LIP, RIP, FLEX.A

Figure 3.37. 8-element loop. Antiaut, PA3, but not PA,

LIP, RIP, LALT, RALT, FLEX.A
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Figure 3.46. 6-element loop. PA, FLEX, Antiaut, zz = e,

but not LIP, RIP, LALT, RALT.A

Construction 3.41. LRA, Antiaut, but not PA, LIP, RIP,
FLEX: Get a (12-21 = 252)-element example by taking direct

product of 3.34 with 3.35.

0.
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0123456789
0123456789
1032798465
23019876654
3210879546
5987604321
6879540213
74651320098

414798065132

*
0
1
2
3
5
6
7

0123456789 ABCDEFGH
0123456789ABCDEFGH
123450FHECGD79A868B
2345018BA7T69HCGETFD
345012EDHGFCB76A9S8
501234GCFDEHO9B86AT
6D8CAH70B492FG531E
9ETHBF4A082615CD3G
A|lAHG6D8C9472BOGE315F
B|BFO9E7G28460A53DHC1
CAH6D85G1E3F2079BA4

C

7TGBFO9EO0O62A4831HCDS
8CAG6DB29074EF15H3

41450123A96B87DHFGEZC
DID8CAH63ES5F1G049B72
E|IE7TGBFO9D3C1Hb5A82046¢6
FIFO9ET7TGBH1D5C386042A
G|GBFB8E7C53HD16A42009
H| H6D9CA1FG35E42B780

*
0
1
2
3
5
6
7
8
9

Figure 3.50. 18-element loop. PA, TPALT, but not LBOL,

RBOL, DIA.A
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0123456
0123456
1205364
2014635
3456210
5362041
6540123

0123456789
0123456789
1234567890
2356784901
3465879012
5687901324
6749018235
7890132546
8901623457
90123456738

*
0
1
2
3

414631502

5
6

*
0
1
2
3
414578290163
5
6
7
8
9

0123456789 ABCDEFGHJKLMNPQRS

. 0.

The 2-element group. A
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Figure 3.47. 10-element loop. IP, FLEX, but not PA, LALT,

RALT.A
Figure 3.48. 7-element loop. PA, IP, FLEX, but not LALT,

RALT.A

Smith

oW AaNMYLONOI SN OUANBKU@IDNHNNMXM JdEZALOXN

*

0

gure 3.52. Unique 12-element non-associative Moufang

loop. A
Figure 3.53.

3+6). Entries a % b not agree-

9A£I=

ing with integer addition a + b mod 27 have been decorated

Figure 3.49. The unique (< 36)-element IPALT but not PA
with umlauts (M versus M). Note that these exceptions occur

loop. (Not PA since 1+8
(—a) + a = 0 never are umlauted. This loop has 27 elements
and is commutative, Lalt, Ralt, Flexible, LIP, RIP, antiaut,

the first row and column 0 + a = a + 0, and the antidiagonal
but not power-associative, L-Bol, nor R-Bol. A

only on the index-3 subgrid and that the diagonal entries a+a,
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4 Do LRalt loops have 2-sided in-
verses?

The question of whether LRalt loops have 2-sided inverses
sounds innocent. But it ushers us into a hurricane of com-
plexity.

In §4.1 we shall see that there are countably-infinite LRalt
loops without 2-sided inverses. However, there are no con-
tinuum-infinite analytically-smooth ones, since Sabanin [19]
showed that analytic LRalt loops are diassociative.

In §4.2 we examine the evidence suggesting that inverses are
always 2-sided in any finite LRalt loop.

In §4.5 we suggest that the LRalt==2SI problem may actu-
ally be among the hardest mathematical problems that are
this simply posed.

4.1 A countably infinite LRalt loop without
2-sided inverses

All the elements of the loop may be defined in terms of 6
particular elements we call e, s, and Ggy, G1, G2, Gs.

The loop will obey Lalt zz-y = z -2y, and Ralt x-yy = zy-y.
The identity element is e so that ze = ex = x for all . The
special element s (which also may stand for either sign or
swap) obeys

e xs = sz (s commutes with everything);

e 5-5=e (s is self-inverse; consequently s* = s or e if k
is odd or even respectively);

e Hence as a consequence of Lalt, ss-x = s-sx = s-xs = z,
and as a consequence of Ralt, z-ss=xs-s=szx-s==x
(thus multiplication by s is a self-inverse operation);

o if zy = z then sz - sy = z and sz -y = z - sy = sz,
(multiplication by s has interesting “pairing” effect; also
s associates with everything);

o if ry =1 and zz = 1 then either y = z or {ys = sy =2
and zs = sz = y} (if « has two unequal one-sided in-
verses, then s-multiplication interchanges them);

e either zy = yx or zy = yas (near-commutativity).

Go, G1, G2, G3 obey
GQ = SG2 = GQS, Gg = SGO = GQS,
Gl = SG3 = Ggs, G3 = SGl = Gls
and
GaGa+l mod 4 = €
so that each of them has two distinct 1-sided inverses.
The full set of elements of the loop are

{Gp, GT', GY, GF*, sGZ", sG3", e, s}, n,m >1, m odd.

(4)
The reason we said that m had to be odd was to prevent
element-duplication, because G2 = G2* and G3¢ = GZF if
k > 0. (Similarly, G§'s = G%* and G7*s = G if m is odd.)
The remaining effects of multiplying these elements by s are
covered by the facts that s associates and commutes with ev-
erything and that

GI' = sGI' = GI's, GI' = sG = GJ's,

(5)

Gy =sG"' =GT's, GT' =sG5' =GY's
for all odd m > 1.

The effects of multiplying G, powers by each other are (where
n,m, j,k > 0 always denote integers)

(6)

Jj ok _ itk
GIGE = GItF,
Jok _ ki _ itk k
GIGE = GkGI = GITF g,
Jok _ ki _ itk k
GIGk = GhGY = GITFg*,

Gy™™ if m<n
Grar =4 (10)
G if m>n
Gy ™s™ if m<n
GI'Gg = _ . (11)
G "s" if m>n

It is now a straightforward matter to see that both left- and
right-division are uniquely defined, so that we indeed have a
loop, and that Lalt and Ralt indeed are obeyed.

Power-associativity is obeyed. The antiautomorphic inverse
property (z\1)(y\1) = (yz)\1 is false in this loop. Indeed we
do not have any antiautomorphism, nor does the loop obey
LIP nor RIP, since any of these would have caused 2-sided
inverses.

However, the following three maps all are automorphisms:
x — 1/x (which maps G, — Ga—1moda), ¢ — x\1 (which
maps Gg — Gat1mods) and x — 1/(1/x) (or x — (2\1)\1,
which in this loop happens to be the same map; note that this
map is involutive) which swaps G, < Gat2mod4-

Osborn’s [15] weak inverse property y((zy)\1) = z\1 is
obeyed in this loop; thus both WIP and the automorphic in-
verse property hold, which is often called the crossed inverse
property CIP.

An A-loop is a loop whose inner mappings (i.e the identity-
preserving permutations of the loop’s elements induced by
compositions of left- and/or right-multiplications) all are au-
tomorphisms. Our infinite loop is not an A-loop because its
inner mapping z — zGq - G is not an isomorphism.

4.2 Do finite LRalt loops have 2-sided in-
verses?

Exhaustive searches with mace4” show that every LRalt loop
(indeed, every LRalt magma with \-division and 1 = ) with
< 185 elements has 2-sided inverses.

Define
n def

xr ¥ x(x(xX(X...X)), (12)

n X'’s in all

i.e. X' denotes the result of starting with 1 and doing a left-
multiplication by X repeatedly n times. (It was this leftward
kind of exponentiation that was intended in the abstract.) We
shall later also have use of X", which is defined similarly but
using right-multiplication; and we shall use X™ without any
subscript when we intentionally wish to leave its parenthe-
sization ambiguous.

"It is necessary to modify the source code to permit loops with over 100 elements. Mace4 reached 185 in only 1 day and then stopped because

it ran out of memory.
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Lemma 4 (Exponents of finite loops exist). Let X be
an element of a finite loop L. Then there exists a positive in-
teger n, called its “left-exponent,” such that X; = 1. Further,
there exists N (the “left-exponent of the loop”) such that for
alUe L, UN =1.

Proof: The repeated left-multiplication process must by
finiteness ultimately repeat a value. Suppose the first repeat
1ng:XbW1thO<a<b ThenXa:XZande XY
by the loop postulates imply Y = Z, which would represent an
earlier repeat and thus a contradiction unless a = 0. There-
fore we conclude that every X € L obeys X} = 1 for some
positive integer n (possibly depending on X') no greater than
the cardinality of L. The exponent N of the loop is then the
least common multiple of all of these n. O

Remark. We could also define right-exponents similarly. We
also could take N to be the LCM of the left- and right-
exponents of all the loop elements if we instead wanted to
get a “two-sided exponent” for the loop.

Let us now discuss the nature of otter’s proofs for small
n, and more generally, the question of what a proof that
LRalt=2SI in finite loops must be like (if it exists).

Consider some loop element X. Suppose for some integer
n > 1 we have X = 1. In a finite loop such an n always
exists. We then have X - le*l = 1. The Lalt and Ralt prop-
erties imply that X has a two sided inverse if and only if they
imply that X, ' X = 1.

Lemma 5 (LRalt=-2SI if n < 6). Any element X in
an LRalt magma obeys X - X;7' = X' X, for each
n=1,2,3,4,5,6.

Proofs: (where = means “= due to Ralt,”
n=1,2: Trivially X = X and XX = X X.
n=3: 1:X-XX§XX-X.

n=4: 1 = X(X - XX) = XX - XX = (XX X)X

(X - XX)X.
n=>5: 1= X(X[X -XX])= XX [X - XX]

(XX - XX)X = (X[X - XX])X.
n=6: 1 = X(X [X(X XX)) = XX [X(X - XX)] = XX -
(XX XX] = [XX - XX]- XX = [(XX-X)X]- XX =
([(XX - X)X]X)X = [(XX - X) - XX]X = [(X - XX)-
XXX = [X(XX - XXX = [X(X[X-XX]))X. O

ete.)

= XX [XX -X] =

R

Sketches of alternate proofs. It is also possible to prove
something more general than the n = 4 case by showing the
identity

(@ ay)y = x(z - yy) (13)
and than the n = 5 case by showing
(- z(zx))y = - 2(z - zy). (14)

The n = 6 case may be proven by showing the identities

(@-yy)y = (zy - y)y = 2y - yy, (15)

zy - (y-y(vy) = (= y(y-yy))y (16)

then letting y = « in the latter and applying Lalt to its left
hand side. (All 4 of these identities arise solely from the LRalt
axioms.) O

One might now conjecture that “the pattern continues” in the
sense that we somehow may always convert X - le*l into
X?_lX by “playing with parentheses,” i.e. by using the LRalt
magma axioms only, without even requiring an identity ele-
ment or a quasigroup. But that conjecture fails at the very
next case n = 7.

Lemma 6 (Which loop axioms are needed?). Any proof
that LRalt=>2S51 will require the following axioms that go be-
yond magmas: the loop axioms that 1 is a left-identity, and
that at least one kind of division (x/y or x\y) exists.®

Proof: The proof consists of the counterexamples in figures
4.2 and 4.3. (We have also previously seen examples of loops
with one-sided alternativity but without 2-sided inverses, so
that both Ralt and Lalt are needed.)

We now point out that ex = x (left-identity) in an LRalt
magma with one-sided (/ only) division implies ze = = (two-
sided identity): we have (y/x) - zx = ya by Ralt, so that
(y/e)e = ye so that y/e = y = ye by the definition of /. O

*1 01234
040001
1101234
2122312
3133123
4114440

Figure 4.1. 5-element LRalt magma with 2-sided identity
e = 1 and with 1-sided, but not 2-sided, division. Exhaus-
tive search with mace4 shows that any element X in any
cardinality-n LRalt magma with identity and (> 1)-sided di-
vision must have a two sided inverse if 1 <n < 38. A

orxXxuITamM~NoOOQWE O oOmO O WN RO
POoOMf XD QQoOMEHOQWE O©TMNOOD WN-
NROPFXRGIEQTMMEMOUQE®> O 0NN WN
WNhROPFXRGEQTMEBEOQmEITOOWNOOSW
AONROM RGN QTMEBEUOQWE®©0 N O
O WNRFROPFRGIDQTMM@MOQWE®O© 0N OO
oQWwoRrOoOrf O IDNTEOXROE Q00 N0
NOoOD ook WONNRHOPEPEXRXNIDQTMOOQWE© N
O N WNTOPFRGUIDQRLEOQW® WO 0
CO NP WNFRFROPTXRUIQTMEUDAQW® O
OO NDOdMIDNNMRONRGWOQTEHO®OQ W
W oo ~NOOPdPWNFROPFXRDQTMMEMEHUDQ|W
QWP OO NOUOdMWNROHEXRGIOQTEUOQ
oL EPNMNONOORGLOWQFOFQmITOTMO
MmoOoQWEEOWwoOUOUd WNRL, N XROIQ T
MHoOOQWE ORL,r NOO S WN0WO XN umQ|
QEMEHOQWEO©O0NOON WNFR,OHE X Ima
TOTMMHOoOQmWOONOOeENR, ORI
GIEQMEBOQEE OO0 NOOS WNER O RIG
RuDoamMEBUOUQW®> 000N od wh = o H|=
CFRUDQTMEHOQW®> 00N WNER= oI

CXRWIEQTMEHOQWE O© 0N WN R~ O %

Figure 4.2. 21-element LRalt quasigroup in which 0 % 06 =
0x5=06% D =5x0=00=0. This is in fact a loop with
identity element L. A

8That is, among the usual loop axioms alone, we cannot omit the demand that at least one kind of division exists, and we cannot omit the

demand that the quantity 1 such that x~—

1z = 1 defines left-inverses, must in fact be a left-identity. However, we might, conceivably, be able to

replace these “non-omittable” axioms with some other, less-usual, statement.
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*x101234567
0/ 01234567
1112345671
2123456712
334560123
4145671234
5156012345
6160123456
771234560

Figure 4.3. 8-element magma with identity e = 0 but with-
out left- or right-division. Obeys LRalt but 3 3% =3 x4 =
0#7=4%3=3%x3s02Slis false. A

Nevertheless, the conjecture is true if n = 2841 or n = 2% +2:

Lemma 7 (LRalt==2SI if X}’ = 1 where n — 2 =1,2).
Ifn=2F4+1 orn=2%+2 then each element X in an LRalt
magma obeys Xle*l = X?ilX.

Proof: Consider the expression

X(X[X(X[X---Xy])]) (17)
where the number of X’s is 2*. By using Lalt in a top-down
manner to pair up X'’s this becomes

=XX (XX [ XX (XX [XX-y)). (18)
Now by again using Lalt in a top-down manner to pair up
X X’s this becomes

= X0 (X (XS (X2 X2 ) (19)
where X2 here denotes X X - X X. Now by again using Lalt in
a top-down manner to pair up X2’s to get X5’s, which here
denotes (XX - XX)(XX - XX), we get

=X (X2 (X2 (X0 [X2 -y (20)
and so on, until ultimately we have
=Xy (21)

k
where Xc(2) is X ) parenthesized in the manner of a
complete depth-k binary tree.

We now use the equality of EQs 17 and 21 in the cases y = X
and y = 1. The result is that Xle*l = X?ilX ifn=2F+1.
To now consider n = 2¥ + 2, let y = XX and find that EQ
17 is just X while EQ 21 is Xc@k) - XX. This by Ralt is
X§2k)X - X and by the preceding result about 2* 4 1 this is
just X, 1X. O

“Mirrorable” n: Define n to be mirrorable if X;' = X' in
an LRalt loop, or magma, or whatever algebraic structure we

are talking about at the moment of use.

Lemma 8. If n is mirrorable in LRalt magmas, then so is
2n.

Proof: By making an Lalt pass, X" = (X X)} By assump-
tion this is (X X)" which by an Ralt pass is X2". O

Consequently, by induction, powers of 2 are mirrorable. A
more general statement is
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Lemma 9. If n = 2F 4+ 27, then n is mirrorable in LRalt
magmas.

Proof: When n = 2¥ 4 1 lemma 7 shows that X}' = X' ' X.
But since n — 1 is a power of 2, lemma 9 shows this is
=X 1X =Xn

When n = 2% + 2 lemma 7 shows that X' = X% XX.

But since n — 2 is a power of 2, lemma 9 shows this is
=Xr?. XX = Xn2X .- X = X"

We may indeed use lemma 9 to double 2877 + 1 repeatedly j
times to get that 2¥+27 is mirrorable for any j with 0 < j < k.
O

Lemma 10. Letn > 1 be odd. A necessary condition that ei-
ther X-X?*1 = X;le or that n be mirrorable, in any LRalt
magma, s that n divide some 2k 4+ 97 with 0 < 7 < k. For the
former problem, it is necessary in addition that 0 < j < k if
k > 2. These conditions in general remain necessary even if
the LRalt magma is known to have an identity element e and
it is known that X' = e.

Proof: Since n > 1 is odd, for any a,b > 0 with a +b =n we
have, without loss of generality, 0 < a < b. We here are asking
that an expression of form X®X? be equal to an expression
of form X®X?. Under Lalt and Ralt we can transform X%X?
to X20 X% and XX to X*~2X?2% but no other changes to
(a,b) are possible. If the magma has an identity element e,
we have the additional option of multiplying some subexpres-
sion by e (where there may be many forms of X*" that are
equivalent to e), or of recognizing that some subexpression
is equivalent to e and therefore removing it. These opera-
tions change neither a nor b modulo n. We thus are asking
that 1 be connected to —1 modulo n by a chain of doublings.
For this to happen it is necessary that 2¥ = —27 mod n for
some 0 < j < k, i.e. that n divide some number of the form
2k + 27, Finally, to see that e = X' = X, 'X will not
happen in general if n = 2* > 8, note that we know that
X7 =X = X""1X, so that if the magma supports cancel-
lation we would have to have X7~ ! = X ;71. That, however,
violates the very necessary condition we have just proven, if
n > 8 is a power of 2, and indeed in figure 4.2 we gave a loop
counterexample. O

The above lemmas show that the following n with 1 <n < 20
are mirrorable: 1,2.3,4,5,6,8,9,10,12,16,18,20, while the fol-
lowing n are not mirrorable in general LRalt magmas: 7,15.
Further, 7 is not even mirrorable in LRalt loops due to the
21-element counterexample in figure 4.2. Mace4 also found ex-
plicit LRalt magmas with 1 in which 11,13, are not mirrorable.
Nevertheless, I conjecture that 11 and 13 are mirrorable in
magmas with right-division (exhaustive searches show that
any counterexample must have > 185 elements) and indeed
that:

Conjecture 11 (Mirrorability). An integer n > 0 is mir-
rorable in an LRalt magma with right-division if n divides
some number of the form 2% + 27 where 0 < j < k.

Lemma 12. Let n be the least common multiple of the left-
and right-exponents of an element X in an LRalt loop, i.e. let
n > 0 be the least integer such that X' = X' = 1. (If the
loop is finite, such an n always exists.) Let g,j,k > 0 and let
m =22k +1] —gn > 0. Then X" = X™.
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Proof: 27[2% + 1] is mirrorable by previous results, and then
we may simply “chop oftf” g chunks of n X’s from the prod-
ucts X' and X" on the grounds that multiplying by 1 has no
effect. O

Lemma 7 suffices to get quite far.

Lemma 13. Ifn > 0 is any integer which divides some num-
ber of the form 2842, then 1 = X- X" implies 1 = X" X
in an LRalt magma with identity.

In particular, this criterion includes

1. All primes not congruent to 7 mod 8 (but primes con-
gruent to 7 mod 8 are excluded),
2. All n which factor into primes congruent to 3 mod 8
(for example n =99 =3-3-11),
3. Among the n with 2 < n < 20, precisely the following:
2,3,5,6,9,10,11,13,17,18,19.
Proof: Because X; = 1 implies that Xf" = 1 we have that
Xf"71 = X;hl so that it suffices to prove Xémle =1. In
other words, “if it works for some multiple kn of n, then it
works for n.” We now sketch the proofs of the specific cases:

1. We have already dealt with p = 2. So let p be an
odd prime. Then it follows from Gauss’s quadratic reci-
procity theorem that some power of 2 is congruent to
—1 mod p, i.e. p divides 2¥ + 1 for some k, if and only
if p is not congruent to 7 mod 8.

2. If n factorizes into primes congruent to 3 mod 8, then
some power of 2 is congruent to —1 mod n because 2F
will do where k is the least common multiple of the in-
dividual k’s; note this will always be an odd multiple of
each.

3.2042 =66 =2-3-11,2"4+2 =130 = 2-5- 13,
210492=2.9.19, 213 4+2=2.17-241. But 7 and hence
14 are excluded by claim#1; 8, 12, 16, and 20 obviously
cannot divide any 2* + 2; finally 15 does not divide any
2% + 1 because 3|(2* + 1) only when k is odd, whereas
5/(2% + 1) only when k = 2 mod 4.

d

The criterion of lemma 13 admits a fairly large set of integers
n. The number of primes not congruent to 7 mod 8 below
x is asymptotic to 0.75z/Inx. The set of n with 1 < n < x
which factor into primes congruent to 3 mod 8 is asymptotic
to Cx(Inx)~°" for some positive constant C.

However, figure 4.3 makes it clear that arguments such as
these, which only employ the axioms of a magma with 1, ul-
timately cannot suffice; quasigroup axioms (the existence of
division) must play a role even when n = 7.

With the aid of otter, I was able to prove that any X obey-
ing X = 1 in an LRalt loop has a 2-sided inverse, for each
n with 1 < n < 20 with the possible exception of 15. More
precisely, of the cases n = 7,8,12,14, 16,20 not already cov-
ered by preceding results: we shall soon describe the proof
for n = 7, and the cases 8,12, 16, 20 all were proven by otter
from the left-identity 1z = 2 and LRalt magma axioms alone,
with no quasigroup axioms being needed. That suggests

Conjecture 14. If n divides some number of the form
2k 4+ 27 where 0 < 7 < k, then each element X in an
LRalt magma with left-identity obeying XXE’_1 =
sarily obeys X' X =e.

€ neces-

(Incidentally, it is not hard to prove that the sets of numbers
obeying the conditions in conjectures 11 and 14, while infinite,
contain arbitrarily large “gaps.”)

Finally, neither otter nor I were able to handle n = 14, 15,
directly, although 14 eventually succumbed to an indirect at-
tack. Specifically, we shall provide proofs for 14 and 15 under
the assumption of conjecture 11. Later otter was able to set-
tle that conjecture in 13-case, providing a proof for n = 14.

Unfortunately, otter’s proofs get more and more complicated
with increasing n and lack any recognizable pattern.

Otter produced a spectacularly complicated 88-step proof for
the case n = 7. Otter is a computerized deduction engine by
W.McCune. One may input axioms to it (e.g. the LRalt
and loop axioms) and ask to to prove some desired conclusion
(e.g. that 1/z = z\1). In some cases, otter will succeed
in finding a proof; in others it will run out of time or mem-
ory. Sometimes otter can be far inferior to a human math-
ematician. Other times — favorable circumstances are when
there are few axioms and little human-exploitable “structure”
— otter seems to achieve vastly superhuman deductive power.
This is one of them: otter found its proof for the case n =7
in 17 seconds, and similar proofs for all cases we’ve mentioned
combined in under 10 minutes. I do not believe any human
can match that performance®. Indeed, this human was un-
able even to fully understand otter’s n = 7 proof. Even
single deductive steps in an otter proof can be quite non-
trivial, e.g. “paramodulations” with many parameters. For
example, according to otter’s notion of a “single step,” set-
tling the case n = 6 (as we did above) requires only 2 steps!
Thus really, otter’s “88-step” proof perhaps would be more
properly regarded as a 200-300 step proof.

Nevertheless, the honor of humanity ultimately partially re-
asserted itself when I produced the following much simpler
n = 7 proof. It comes quite easily once one adopts the goal of
incorporating both the identity element 1, and cancellation,
into the proof, in the simplest possible manner.

n="7: To prove 1 = ZZ implies z¢z = 1 in an LRalt loop, we
begin by multiplying both sides of the former equation by z
on the left to get z = 2§. By the equality of EQs 17 and
21 when y = 1 and k = 3, it follows that z? is equal to its
mirror, so that z = ([(22)z- 2]z - 2)z - z. Now cancel 2’s to get
1 = ([(22)z - 2]z - 2)z, i.e. we have proven 2] = 27 if 1 = 2].
This reduces our task to proving that zf = 28, i.e. proving
that 6 is mirrorable — but we already know that from lemma

9. O

n=8: We provide an extremely sparse sketch of otter’s spec-
tacularly complicated 40-step proof!® that A% = 1 implies
A7A =1 in an LRalt magma with left-identity 1 (i.e. 1z =z
for all ).

9A famous case was the solution of the open “Robbins problem” by McCune’s other deduction engine EQP [13], which on contemporary
computers would take about 1 day. I defy any human to solve the Robbins problem in anywhere near 1 day.

10 Although otter’s proof definitely may be simplified if we allow ourselves additional loop axioms, I have been unable to produce a truly simple
proof, nor have I been able to simplify it at all in the absence of additional axioms.
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First otter derived the following 5 identities from the LRalt
axioms alone:

[z -y(y-yy)ly =2y - [y(y - yy)] (22)

[(z - zy)(x[z - yy])]y = (= - zy)[(z - 2y) - yy] (23)
[y - (z - yy)ly = zy - [y - yy] (24)

[z 2(z - 2y)ly =2 w[z(z - yy)] (25)

rix = af (26)

Various facts are true about A which are not true for gen-
eral z. For example, A-1 = A, even though we had only
assumed 1 was a left identity. This arises from the identity
z-x(z-xlr-x(x-zy)]) = 2ty (which is a special case of the
proof of lemma 7) by using y = z = A to get A) = A}A and
then recognizing the left hand side as A - 1 and the right as
1-A=A.

Note that we derived A1 = A by starting with some generally
true identity applied to A, left-multiplying various subexpres-
sions by some form of 1 = A®, rearranging parentheses, and
then recognizing certain other subexpressions as forms of 1
and hence removing them. Otter used this same strategy (but
in more complicated ways) to find AJA3 = A8, A}A3 = A7,
ASAS = A}, ADAS = A3, AAS - A3AT = 1, AJAS = A,
A3 A} = A7, and the goal of the proof, namely AJA = A} =1
(as well as many other, less simply expressible, claims). All of
these are true for A but are unobtainable (in LRalt magmas
with left-identity) for general x.

The finale of otter’s proof is as follows. It manages to ob-
tain AJAS - A3A} = 1. Tt then uses this fact (among others)
to derive A3A} = A7. From this we know (AJA})A = AJA.
Now applying EQ 23 with = y = A to the left hand side
gives A% = A7 A and upon recognizing the left hand side as 1
we have proven the theorem. O

n=14: To prove Xé14 = 1 implies X}3X = 1 in an LRalt
loop in which 18 is mirrorable: Left-multiply by XX and
employ Lalt to get X} = 1. Now by repeated uses of Lalt
to pair X’s into X X’s, then into X2*’s, and so on we have
X0 = (XX)§ = (XH} = (X8)? = X1 so that now by a
mirror argument X ;¢ = X6 = X160 = X1 X . X = XM XX.

Now since X}* = 1 we have that XX = X - XX so that by
cancelling the X X we get X!* = 1. This is X*X = 1. Now
if 13 is mirrorable, then X = X /3 and we are done. O

Remark. M.K.Kinyon (private communication) was able to
get otter to prove 11 and 13 mirrorable in loops. That com-
pletes the n = 14 proof above.

n=15: To prove X;° = 1 implies X/*X = 1 in an LRalt loop
in which 29 is mirrorable: It suffices to prove X29X = 1.
Left-multiply by XX and employ Lalt to get X ?2 = 1. Now
by repeated used of Lalt to pair X’s into X X’s, then into
X%s, and so on we get (similarly to in the previous proof)
X3 =X32=X3=X¥X X = X30. XX. Now since

X3Y =1 we have that XX = X2Y. XX so that by cancelling
the XX we get X3 = 1. This is X2°X = 1. If 29 is mir-
rorable then X2 = X7 and we are done. (]

It probably would be possible to establish fully rigorously the
fact that elements X with left-exponent n in an LRalt loop
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have 2-sided inverses for both n = 14 and 15, by: writing a
special purpose computer program based on standard graph-
connectivity algorithms and the graph-reformulation of the
problem in §4.3. If so, then the next open case would be
n = 21.

4.3 The graph picture

Let G, be the graph whose vertices consist of the ordered
rooted binary trees with n leaves. Each such tree represents a
way to parenthesize X™. The edges of GG, join two trees which
are equivalent by an Lalt or Ralt re-parenthesization. The
question of whether an element X in an LRalt magma obeys
X?ilX = X}, is then equivalent to the question of whether
these two particular vertices of G,, lie in the same connected
component. This view enables proving certain statements eas-
ily, which otherwise might have been difficult. For example

Lemma 15 (Unboundedly large proof lengths). The
graphical distance (number of edges in the shortest path be-
tween) these two vertices is at least n — 2.

Proof: Each n-leafed ordered roted binary tree may be re-
garded as the planar dual of a triangulation by diagonals of
a convex (n + 1)-gon with one distinguished “root edge” AB.
Each associative transformation corresponds to erasing a di-
agonal and then retriangulating the resulting quadrilateral-
shaped hole using the other diagonal (and LRalt transforma-
tions are a subset of associative transformations). Originally
all the n — 2 diagonals have endpoint A but none have end-
point B, but in the final state, the opposite is true, so at least
n — 2 transformations have to be made. 0

Now define the graph G, which has an infinite number of
vertices, as follows. Its vertices correspond to the ordered
rooted binary trees with kn leaves for all £k = 1,2,3,.... In
addition to the LRalt edges we mentioned before, there are
also edges linking kn-leaf trees to (k + 1)n-leaf trees, corre-
sponding to multiplying some subexpression on the left or
right by X lI™ = 1. The question of whether an element X
in an LRalt magma with 2-sided identity 1 has a 2-sided in-
verse, given that Xj' = 1, is then equivalent to the question
of whether two particular vertices of G/, lie in the same con-
nected component.

Finally, define the graph G/. It too has an infinite num-
ber of vertices. Now they correspond to the unordered pairs
of ordered rooted binary trees with finite numbers of leaves.
In addition to the LRalt and 1-multiplication edges we men-
tioned before (now operating independently on each member
of the pair; so far G = G/, x G}, but we shall now adjoin an
infinite number of additional edges), there are also edges link-
ing pairs of trees to pairs of trees each with K extra leaves,
corresponding to multiplying both entire expressions by some
common K-term expression on the left or right, i.e. (in the
latter case) to adjoining new roots to both trees in the pair,
whose two left children are the two old trees, and whose two
right children are two copies of the same new K-leaf tree.
The question of whether an element X in an LRloop has a
2-sided inverse, given that X' = 1, is then equivalent to the
question of whether the two particular vertices of G’ repre-
senting {X7,1} and {X;"'X,1} lie in the same connected
component.
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Connectivity questions about infinite graphs or directed For the purpose of comparison, consider these 8 problems:

graphs are notoriously difficult, the “3z+ 1 problem” [8] being
a simple prototypical unsolved example.

4.4 Possible 87% solution?

The situation so far is: The LRalt==2SI problem remains
unsolved in finite loops. Even for the (apparently simpler)
problem in magmas with left-identity, or magmas with right-
division, we have been unable to completely settle the ques-
tions of which n cause X' = X' and which n cause X} =1
to imply X ;_1X = 1. But we have made some progress by
finding some necessary, and some sufficient conditions.

We now sketch a plan of argument which may enable an
“87.5% solution.” A conjecture essentially the same as the
standard conjecture that there are an infinite number of twin
primes (p,p + 2) is

Conjecture 16 (Modified twin-primes). Given an odd
number n, there are an infinite set of numbers k such that
4kn + 1 and 4kn — 1 both are prime.

Theorem 17. Let n > 0 be an integer not divisible by 8.
Under the assumption of conjectures 11 and 16: in an LRalt
magma with identity 1 and with right-division, X™ = 1 im-
plies that X has a 2-sided inverse.

Proof: Let n not be divisible by 8. Find k so kn 41 both are
prime, and kn = 4 mod 8. Then observe that by conjecture 11
and some easy number theory, that kn+1 both are mirrorable.
Left-multiply X" by X to get X;"*! = X/"*+! = X. Right-
cancel the X’s to get X = 1 = X**~1X. Now mirror to
get = X;" 71X =1=X]"'X.

This would totally settle the LRalt==-2SI problem except for
those n that are multiples of 8 (i.e. 7/8 = 0.875 of all n).
Further, some of the multiples of 8 could be handled by con-
jecture 14; the first open case would be n = 56. O

This proof-plan, of course, still would only provide “87% of a
solution,” and cannot be implemented at least until the 3000-
year-open twin-primes problem is settled! In that case, theo-
rem 17 merely would serve to reduce the problem to proving
conjectures 14 and especially 11. Still, that reduction ar-
guably is progress since these conjectures concern LRalt mag-
mas with left-identity and right-division, respectively (i.e. not
both at the same time) — more simply defined objects than
LRalt loops.

4.5 Candidate for the most frustrating prob-
lem in the world?

Connoisseurs of frustration prefer their problems to be sim-
ple to state, mathematically natural, and difficult to solve.
According to these criteria, the LRalt==-2SI problem is a
surprising contender for the world’s top problem!

The LRalt==-2SI problem has an extremely simple statement:

Given that, in a finite universe,

lxz=wz; (2/y)*y=u; (27)

v (yry) = (wxy)xy; (yxy)rz =yx(y*z); (28)
does it then follow that x x (1/x) =17

1 See §5.
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1. What is the maximum number of faces of a convex poly-
hedral space-tiler?

Does white always win a perfectly played chess game?
Are there an infinite number of primes of the form
n? + 1?7

. The “3x+1 problem” [8] of whether the iteration on the
positive integers * — 3z + 1 if z is odd, x — z/2 if x is
even, will always reach the value x = 1, no matter what
the starting point.

Does P=NP? [6]

Are all planar graphs 4-colorable? [17]

Classify all finite simple groups. [3]

Do there exist integers a,b,c > 0 and n > 2 with
a™ +b" = "7 [22]

® oo

All are mathematically natural with the possible exception of
the 3z 4+ 1 problem.

The first 5 problems (with the possible exception of the first,
which has not been worked on as hard as the others) seem
well beyond reach, whereas problems 6-8 have (with immense
effort) been solved, albeit the solutions of 6 and 7 seem suffi-
ciently long that it is almost beyond the ability of any single
human to check them.

Although all of these problems may seem simple to state,
one gets a more precise perspective on the “simplicity” of a
problem statement after gaining some experience inputting
problems to computerized proof- and counterexample-finding
tools such as otter and mace. If one is only allowed to em-
ploy first order logic and must describe the problems to a
completely naive listener, i.e. such a computerized system,
then the descriptions of each of these 8 problems are longer
— usually much longer — than ours. (Just getting started by
defining notions such as “integers,” “primes,” “space-tiling,”
“convex polyhedron,” “planar graphs,” “classification of sim-
ple groups,” “P,” “NP,” or the rules of chess already takes too
long.) Probably the simplest 3 to state among our 8 are the
3z + 1 problem, the classification of simple groups, and Fer-
mat’s last theorem, but neither is as simple as ours.

It is notoriously hard to estimate the difficulty of open prob-
lems, and especially so in the case of LRalt==2SI since
M.K.Kinyon'! and I are the only people who have tried hard
on it. But let us say this.

1. The (n? 4 1)-primes and twin-primes problems have been
open for thousands of years, which makes them harder than
the last three (solved) problems. We’ve seen reasons to sus-
pect the LRalt==-28I problem may be at least equally hard
as them and the 3x + 1 problem.

2. Everybody is confident they already know the answers to
problems 3,4,5 but merely cannot prove it; and it is trivial
to investigate 3,4, and 8 up into the billions by computer.
In contrast, computer investigation of LRalt==2SI is much
harder and I feel considerably less confidence I know its an-
swer.

3. Solving chess is a “trivial” problem in that it may be solved
purely mechanically by a finite case analysis using only first
order logic. But (we have shown in §4.1) no such solution is

5.
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possible for LRalt:F>2SI (at least, if the answer, as expected,
is positive).

Should the joys of LRalt==-2SI pall, the reader is reminded
that there are 5 more problems of the same ilk listed in table

1.1. All of them are only slightly harder to state and they
may be even harder to solve.

5 Acknowledgements and updates

J.D.Phillips found a few of the loop examples in §3, or closely
related loops, before I did, and also did some work on the
LRalt==2SI problem, which I had dropped on him rather
like a bomb. We both initially thought that problem was
going to be far easier than it now seems. It was he who ini-
tially suggested the conjecture that its solution depends on
the finiteness of the loop; all my investigations so far support
that.

P.Vojtechovsky spotted a typo which caused the appearance
of a serious error. (It has been corrected.)

It should be obvious that I have made heavy use of
mace4 [10] and otter [11]. My own programs loop-
beaut.c and setinc.c, are available on my website
http://math.temple.edu/~wds/homepage/works.html.
The use of all 4 of these programs (albeit setinc.c would
have to be appropriately modified) should enable future in-
vestigations of the same sort to proceed in a highly automated
way.

Updates: M.K.Kinyon and I (with computer aid) have ex-
amined the LRalt==2SI problem further since this paper was
written and conceivably a followup paper by one or both of us
may appear. In particular Kinyon showed that X must have
a 2-sided inverse in an LRalt loop if X™ = 1 with n < 31 and
n = 63 and I showed this is true in an LRalt magma with
2-sided identity if n divides any number of the form 2 + 2.

Kinyon suggests that a possibly-productive line of attack on
the LRalt==2SI problem would be to prove in an LRalt
magma with 1z = z1 = z, that A} = 1 implies these two
equations hold: A} 'A% = A, A77' (A} T A) = A}t If the
magma has right or left cancellation (respectively), then these
respectively would suffice to imply 2SI. Kinyon also suggests

investigating A} " A} " = A} 7% and (A} 7))} = A

References

[1] G.Bol: Gewebe und Gruppen, Math. Annalen 114 (1937) 414-437.

[2] Richard Hubert Bruck: A survey of binary systems, Springer-
Verlag 1958, third corrected printing 1971 (Ergebnisse der Math.
#20).

Feb 2004

15

(3]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17)

(18]

19]

20]

(21]

(22]

J.H.Conway, R.T.Curtis, S.P.Norton, R.A.Parker, R.A.Wilson:
ATLAS of Finite Groups, now reprinted with corrections and ad-
ditions Oxford Univ. Press, November 2003.

Vilnis Detlovs & Karlis Podnieks: Introduction to Mathematical
Logic, electronically available textbook at University of Latvia,
http://www.ltn.lv/~podnieks/mlog/ml.htm. Chapter 4 covers
completeness theorems.

Herbert B. Enderton: A mathematical introduction to logic, Aca-
demic Press 1972.

M.R. Garey & D.S. Johnson: Computers and Intractability,
W.H.Freeman and Company, San Francisco, 1979.

Kurt Godel: Die Vollstiandigkeit der Axiome des logischen
Funktionen-kalkiils, Monatsh. fiir Mathematik und Physik 37
(1930) 349-360.

Jeffrey C. Lagarias: The 3x+1 problem and its generalizations,
Amer. Math. Monthly 92 (1985) 3-23.

Bird Brain
web

W.McCune: Son  of
tion system  demonstration
unix.mcs.anl.gov/AR/sobb/.

(automated  deduc-
page),  http://www-

William W. McCune:
cs.SC/0106042

Mace 2.0 reference manual and guide,

William W. McCune: Otter 3.3 reference manual, cs.SC/0310056

W. McCune & R. Padmanabhan: Automated Deduction in Equa-
tional Logic and Cubic Curves, Springer-Verlag (LNCS [AI sub-
series] #1095) 1996.

W.  McCune: Solution of the Robbins Problem,
J.Automated Reasoning 19,3 (1997) 263-276 and http://www-
unix.mcs.anl.gov/~mccune/papers/robbins/.

Elliot Mendelson: Introduction to mathematical logic, Lewis Pub-
lishers Inc. 4th ed. 1997.

J.Marshall Osborn: Loops with the weak inverse property, Pacific
J. Math. 10 (1960) 295-304.

J. D. Phillips and Petr Vojtechovsky C-loops: An Introduction,
MO04/03 at http://www.math.du.edu/preprints.html.

N.Robertson, D.P.Sanders, P.D.Seymour, R.Thomas: The four
colour theorem, J. Combin. Theory B 70 (1997) 2-44.

D.A.Robinson: Bol loops, Trans.Amer.Math.Society 123 (1966)
341-354.

L.V.Sabanin: On the diassociativity of smooth monoalternative
maps, Russian Math. Surveys 51 (1996) 747-749.

Warren D. Smith: Loop diassociativity has no finite basis, avail-
able at http://math.temple.edu/~wds/homepage/works.html.

Warren D. Smith: Quaternions, octonions, and now, 16-ons and
2™-ons; New kinds of numbers. Book, under review for publica-
tion.

Andrew Wiles; Modular elliptic curves and Fermat’s Last Theo-
rem, Annals of Mathematics 141 (1995) 443-551.



