
Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

New cryptographic election protocol with best-known theoretical properties

Warren D. Smith

warren.wds@gmail.com

September 9, 2005

Abstract — We describe a correct, “verifiable,” and “co-
ercion resistant” election scheme which takes O(N + V)
(highly parallelizable) steps to process V votes by N

voters. It can handle essentially any underlying vote-
combining method, provided the number of possible dis-
tinct votes is far smaller than the number of voters. In
these theoretical senses (aside from the proviso) the new
voting protocol is optimal.

Juels, Catalano, and Jakobsson had introduced the first
such scheme in 2002, except that it consumed quadratic
work and communication bandwidth and was vulnerable
to two attacks (described here). Our scheme is obtained
from JCJ’s by first modifying it to make it immune to
the two attacks, then adding two ideas to speed it up to
linear time, then finally adding a third idea to reduce the
constant factor in the O to the point where it apparently
becomes practically feasible.

The extra security guarantees encapsulated by “coercion
resistance” perhaps are not enough, in a practical sense,
to make our new protocol more desirable than simpler
schemes based on homomorphic encryption and bulletin
boards. That is because our new scheme makes heavy
use of mixnets and cooperative computation on “shared
secrets” carried out by mutually distrustful parties – both
of which cause our communication and/or verification re-
quirements to be comparatively large.

Finally, we remind the reader that still no secure voting

scheme is presently known that is anywhere close to fea-

sibility, for handling non-additive election methods that

involve enough bits per vote to allow typical voters to

generate unique votes. The author’s “reweighted range

voting” is an example of such an election method – it ar-

guably is the best one available for multiwinner elections

– and the cryptographic community so far has not even

considered how to handle such elections.

1 Cast of characters
Bulletin boards (BBs): Memory which may be read (with

random access) by anybody, and which may be writ-
ten by approved agencies. It is usually convenient to
assume that this writing is always of “append” (rather
than “random access”) style.

Voters: Provide votes (in encrypted form) which are posted
on a bulletin board.

Mixers: Accept N encrypted inputs, permute and re-encrypt
those inputs, and output the N results along with ZK-
proofs1 that they did so. Several mutually distrustful
mixers, one after the other, can thus perform a permu-
tation and simultaneous re-encryption of the data with
nobody knowing what the product permutation is. (This
is called a “mixnet.” It is important that the mixers dis-
trust one another because that way at least some will
refuse to collude and will not tell each other their secret
permutations.)2

Talliers: There are several, mutually distrustful, talliers.
Each tallier knows some secret information not known to
the other talliers. This allows super-threshold subsets of
the talliers to perform computations cooperatively that
would be infeasible for any subthreshold set. (It is im-
portant that they distrust one another3 because they
will refuse to collude and will not tell each other their
secrets.)

Verifiers: The voters and talliers and mixers broadcast
enough information in the form of “zero knowledge
proofs” (preferably “non-interactive” ones4) to permit
any external verifier, by examining that information, to
become confident that the talliers, voters, and mixers
are performing the computations they are supposed to
(or confident that some – whose identities will be appar-
ent or irrelevant – are cheating, or that super-threshold
sets of cheating talliers and/or mixers are colluding).

2 Informal definitions of Security
guarantees

Correctness: ① Each authorized voter’s chronologically-
last-cast5 vote is incorporated – correctly – into the
computed election result, but ② no unauthorized voter
can have his vote counted and ③ no voter can have more
than one vote counted.

Verifiable: After the election, the facts that ①-③ were true
are proven by a zero-knowledge proof that is available
to external verifiers – or (if one or more were false) then
the ZK-proof protocol makes it clear which actor first
violated the protocol.

1ZK is an abbreviation for “zero knowledge.”
2It is simplest conceptually to regard the mixers and talliers as disjoint entities. However, they could in fact be the same entities.
3Unless the election is a total sham, at least some of the competing candidates ought to distrust each other.
4To reduce communication needs, and also to allow creation of a permanent record, reviewable at a later time, of the election.
5Other vote-selection conventions could also be considered.

June 2005 1 2. 0. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

Coercion resistant: “We allow the adversary to demand of
coerced voters that they vote in a particular manner,
abstain from voting, or even disclose their secret keys.
We define a scheme to be coercion-resistant if it is infea-
sible for the adversary to determine whether a coerced
voter complies with the demands.” [19]

Our schemes shall depend on the assumed difficulty of the
discrete logarithm problem in elliptic curve groups of large
prime order.

3 Sketch of the JCJ scheme [19]

The identity of voters remain hidden throughout the JCJ vot-
ing process. Each ballot contains inside it a “concealed cre-
dential” in the form of an encryption C of a secret value σ
known only to that voter, and an encryption B of the vote
itself, and a NIZK (non-interactive zero knowledge) validity
proof P of that vote6 – and P also includes a NIZK proof of
knowledge of σ indecomposably ANDed (§A.3) with the first
proof:

(C, B, P). (1)

The tallier discards all votes with bogus validity proofs. To
ensure that ballots are cast by legitimate voters, the tallier
performs a blind comparison between ① the hidden creden-
tials on the (scrambled-order and re-encrypted) list of votes,
and ② each member of a pre-scrambled and pre-encrypted list
(both scramblings and re-encryptions are got by putting the
lists through a mixnet) of genuine also-encrypted credentials
generated from the pre-posted list of legitimate voters. This
comparison may be done via a “plaintext equality test” (PET,
see §A.7) on data that has been encrypted via randomized El-
Gamal7 encryption. Of course the tallier broadcasts ZK va-
lidity proofs of all the mixing and plaintext-equality-testing.

This allows the tallier to determine each vote’s legality, and
to prevent double voting, but without knowing any vote’s
author or content, and indeed without it ever being revealed
who voted.8 If several votes by the same voter are detected by

PET during tallying, then all but one of them is arbitrarily
discarded (perhaps according to some predetermined policy
such as keeping the chronologically last vote cast).

Finally, the votes in the final weeded list are decrypted,
posted, and totaled.

JCJ employ several mutually distrustful talliers who cooper-
atively decrypt [9][23][10][11] the final weeded votes (no one
can do this decryption individually) and who cooperatively
perform plaintext equality tests.

Vote-coercion attempts will not work because the coerced-
voter could simply provide a vote with an invalid credential.
Because plaintext equality tests are not performable by indi-
viduals but only by a super-threshold set of vote tallying au-
thorities working in cooperation, the coercer cannot check the
credential’s validity. The official validity checks are only per-
formed after mixing, so the coercer cannot know which votes
passed the validity tests. Because the votes are encrypted,
and the decryption key is known only in a shared-secret sense
to the talliers, but never known to any individual (nor indeed
even to any subthreshold set of talliers) nobody can decrypt
the votes, until, at the very end, the talliers do so coopera-
tively (and post the resulting plaintext votes on a BB).

Finally, although a voter could provide the plaintext form of
his credential σ to anybody, that would not help them to
identify a vote containing an encryption of it, because no in-
dividual knows the decryption (or encryption, after several
re-encryptions are done9) key, and the encryption method is
ElGamal randomized.

4 Criticism of JCJ scheme

The JCJ scheme has, in most respects, better security guar-
antees than any other voting scheme I know, and indeed JCJ
formulate a rigorous definition of a strong property they call
“coercion resistance” and claim their scheme satisfies it. Nev-
ertheless it has the following three weaknesses:10

6I.e. that it represents the name of an actual candidate, if we are speaking of a plurality-type election.
7JCJ actually propose using modified ElGamal encryption (fr , gr , hrM) of a message M where h = fkgℓ and the fixed random group elements

f, g, h are public while the discrete logarithms k and ℓ are secret. We for simplicity here are considering only the original ElGamal scheme (i.e.
with f = 1) but nothing prevents us from changing everything to modified ElGamal throughout if we desire to follow JCJ more closely.

8While JCJ consider this to be a benefit, others might consider it to be a bad thing. Benefit : If nobody can tell whether I voted, then supposedly
nobody can coerce or bribe me not to vote. (This in fact is essential to prevent forced-abstention attacks. If there are 1000 voters, an adversary
could coerce 200 of them not to vote, then check there were exactly 800 votes... but that attack would not work if only 449 among those 800
actually voted, as in the contemporary USA. [This attack was suggested by R.S.Araujo.]) Demerit : If I cannot prove to anybody that I did not
vote, then an enemy might physically prevent me from voting, and then I would be unable to prove to possible rescuers that I had been prevented.
In BB-homo election schemes (§9) each vote is digitally-signed by its author and posted on a BB under his name, so that everybody knows who
voted. Therefore BB-homo schemes allow voters to prove they did or did not validly vote, but (consequently) also allow “forced abstention” attacks
by coercers. (Note: In Australia, voting is mandatory and non-voters must pay a fine. The JCJ scheme would therefore be unsuitable for use in
Australia, but BB-homo schemes – which reveal who voted – would be Australia-compatible.) We could with JCJ still provide designated-verifier

ZK-proofs to each voter that their vote was used (§A.4), and still allow voters to prove or disprove that they successfully pre-registered. Thus voters
would immediately know if their vote had been discarded (or not) but would be unable to prove that to anyone else. This seems a considerable
demerit - because I consider schemes based on discarding a percentage of votes from certain geographical areas to be a common manipulation in
the contemporary USA, but consider vote-coercion and vote-selling to be much less common. JCJ is vulnerable to an Election Authority that
decides to discard 10% of all input-votes from all Florida Counties with large Black populations. Rejoinder : if each voter votes several times, then
that attack would be much less effective. Also, if each voter submits votes to several EAs including his favorite EA (and there are several mutually
distrustful EAs) then his vote is unlikely to be discarded by them all. Also, each time an EA discards a vote, the voter would immediately know

it because he would not see data appending to the BB with a designated-verifier ZK-proof that it was his vote. That might inspire that voter to
try another EA. [In BB-homo schemes where each vote is posted under that voter’s name, a corrupt EA/BB could simply refuse to post the votes
of voters it had pre-decided to block. Those voters would then be able to prove they had not successfully voted, and could try to get help.]

9More precisely, no individual is able to re-produce the encryption and thus demonstrate to a coercer that a specified vote is present.
10Note: when I wrote this, I was working from notes I had made some years before about the (then) version of [19]. But the newer version of

[19] now available on Ari Juels’ web page, now is mostly immune to the attacks we give, apparently because, during the intervening years, Juels et
al thought of almost exactly the same attacks I did and then also thought of almost exactly the same defenses I did. We shall nevertheless leave

June 2005 2 4. 0. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

“1009 attack”: The coercer could force his voter victim to
provide a large number, say 1009, of identical coerced-
votes, and then later see if any legitimate voter pro-
vided exactly 1009 identical votes – a fact that would
be apparent to everybody since public plaintext-equality
proofs had been broadcast to justify every elimination
of a duplicate vote. (If no valid vote was duplicated ex-
actly 1009 times, the coercer concludes that his voter
victim either provided a fake credential, or provided ad-
ditional uncoerced votes; either way, the coercer now
has reason to punish his victim.)11

“Timestamping attack”: If votes also contain a date and
time so that the chronologically last-cast identically-
credentialed vote may be kept, doesn’t that allow voters
to effectively uniquify their vote, and thus (by remem-
bering the exact time) sell their vote?12

Unusable with uniquifiable votes: The JCJ scheme is
unusable13 with voting systems such as reweighted
range voting [27] in which it is feasible for voters to
uniquify their votes, with high probability distinguish-
ing their own vote from all others.

The main defect of the JCJ scheme is that processing V
votes by N voters requires O(NV) steps to perform all the
cross checks, i.e. at least N2 steps. With 108 voters, some
multiple c of 1016 group-exponentiations is required, which,
even assuming c exponentiations could be done in 1 millisec-
ond, would require 3000 centuries of compute-time. With
present day prices and technology, this amount of computing
seems unacceptable, although perhaps not impossible.

What really makes this absolutely unacceptable is the huge
number (of order NV) of proofs of failed plaintext-equality-
tests that need to be provided to all verifiers to justify keeping
the non-bogus votes; that amount of storage, communication,
and verification work is absolutely unacceptably huge.

5 Two (and a half) alterations of

JCJ designed to defeat the “1009”
and “timestamping” attacks

A “1009 fix” that does not work: To defeat the 1009 at-
tack, we could simply impose some fairly small upper limit L
(e.g. L = 10) on the number of times one is allowed to vote.

While at first this seems a good idea (and it would also have
the benefit of bounding the runtime) it actually is not. The

problem is that this would allow a coercer to prevent a voter
from voting by forcing him to submit ≥ L coerced votes. If
you submit L valid votes then I have forced you to vote the
way I want; if you submit bogus votes then I have deprived
you of the right to vote.

First successful altered version: Suppose we change JCJ
so that

1. All duplicate votes are discarded (i.e. if there are M
identically-credentialed votes, then all M are discarded,
not just M − 1).

2. This is done before comparison with the official creden-
tial list, by self-comparison of the vote-list.

Result: the altered algorithm now runs in V 2 time to pro-
cess V votes, which unfortunately is slower than the original
O(V N) runtime bound.

But it now seems immune to “1009 attack”: If I force you to
provide 1009 cloned votes, this is not useful to me, since all
1009 will be discarded, and I have no way to know if any had a
valid credential because they are discarded before comparison
with the official credentials.

This version also is immune to the “timestamping attack” be-
cause since all duplicate votes are discarded, there is no need
to have any timestamps since there is no need to find the
chronologically last duplicate.

This altered-JCJ suffers from the disadvantage that you have
to be “sure” when you validly-vote, since you cannot correct
a mistake by making a later re-vote.

Second successful altered version:

1. Mix and encrypt votes.
2. By self-comparison of vote-list credentials via plaintext

equality testing, remove all but 1 of each equivalence-
class of identically-credentialed votes. This one could
(optionally) be the chronologically last.

3. Remove timestamps from votes.
4. Re-mix and re-encrypt the resulting pruned and

timestamp-free vote list.
5. Compare votes via P.E.T. to (mixed & encrypted) offi-

cial credential list; remove bogus votes.
6. Decrypt, post, and then count the votes.

This altered algorithm also requires V 2 time to process V
votes, again slower than the original O(V N) runtime bound.

our discussion as is, because it is informative to go through the attack and defense thought processes, and also because there are some differences
in our solutions.

11I admit this is not that strong an attack, since there could be two coercers who both thought of the same number “1009”..., and also the coercer
cannot know for whom those 1009 votes were cast, unless he watches the voter voting. If I force you to vote 1009 times for Hitler (and watch
you do it), then you could try to defeat this coercion by using a fake credential, then remember “1009,” then later vote a second time 1009 times
for Gandhi, but now using a genuine credential. But I could defeat that by imprisoning you and preventing you from voting a second time – or
giving you a drug that prevented you from remembering “1009”. But there would be no need for such extreme measures if you wanted to sell your
Hitler-vote to me, and were willing to provide reasonably convincing evidence to me that you had not re-voted at any other time. So this attack
undermines the no-sale/no-coercion guarantees JCJ claim to provide, to at least some extent.

12JCJ could defeat this attack simply by not having any timestamping, and choosing randomly the vote to keep from a set of identically-
credentialed votes. Then timestamping and last-cast-choosing could still be effectively got as follows: each time the voter changes his mind and
re-votes, he submits 9 times more votes than all the previous votes he cast. That way, a randomly chosen vote will be of the chronologically
last-cast type, with probability 90%. Unfortunately the cost of this idea is tremendous: after m mind-changes, a voter will have cast (9m+1 − 1)/8
votes!

13More precisely, it is still useable, but it loses all its coercion-resistance. Reweighted range votes contain “real numbers” having a large number
of bits inside each vote; they are not just one bit per vote. Therefore a voter can point to his unique vote in the final decrypted vote list and thus
sell it or prove its presence to a coercer.

June 2005 3 5. 0. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

But this method now permits correcting a mistake by making
a later re-vote, and still is immune to the “1009 attack.”14 It
also is immune to the “timestamping attack.”

The L-limit fix revisited: Although we began by disparag-
ing the “L-limit fix,” it would work if there were no limit on
the number of votes you could cast – there only was a limit
L on the number that you could cast that had any particular
credential. (Any credential used more than L times would,
we agree, be eliminated from the election along with all votes
that employed it.) Then any coercer would be unable to tell
that a voter had simply employed an invalid credential with
his coerced “votes.” But this “revised L-limit fix” would have
to be used in combination with one of our two successful al-
tered schemes above and like them would require O(V 2) steps
to eliminate the too-duplicated votes via PET self-comparison
of the credentials in the V -vote list.

Unfortunately the originally-hoped-for“benefit”of the L-limit
idea – of keeping V small to speed it up – does not materialize
with this revised L-limit idea.

Why all these alterations still are inadequate: Al-
though both these alterations defeat the “1009” and “times-
tamping attacks,” they make an already unacceptably slow
voting technique become even slower.

Let V be the number of submitted votes, including duplicates
and/or bogus votes and let N be the number of voters. Then
V can be much larger than N .

So our new runtime V 2 can be much larger than N2 and NV ,
which already are unacceptably large compared to what it
ought to be, namely O(V + N) time.

Runtimes that grow significantly faster than O(V +N) permit
“denial of service attacks” where the attacker submits an
enormous number of bogus votes. Thus V becomes very large.
Although these votes will not affect the election result, they
will force JCJ’s scheme (and even more so, our slower altered-
JCJ schemes) to run so slowly that the election effectively will
be cancelled.

The attacker can do this even with far smaller computa-
tional and communication resources than the election author-
ity, since the attacker’s runtime is O(V) while the EA’s (elec-
tion authority’s) is O(V 2).

Our goal: Here is a quote from JCJ [19]:

A drawback of our scheme is that, even with
use of asymptotically efficient mix networks... the
overhead for tallying authorities is quadratic in the
number of voters. Thus the [JCJ] scheme is only
practical for small elections. Our hope and belief,
however, is that our proposed scheme might serve
as the basis for refinements with a higher degree
of practical application.

This paper provides exactly such refinements.

6 First idea behind new voting
scheme – speedup to linear time

The primary problem with JCJ was its superlinear runtime.
It would be better to devise a JCJ-like scheme running in only
O(V +N) time, or nearly so, e.g. O(N log N +V log V) steps.

To accomplish that, we need to get rid of the “plaintext equal-
ity tests.” Because PETs can only be used to spot all equal-
ities by all-pairs testing, their use forces order NV runtime
to compare a V -element list of votes to an N -element list of
credentials, and order V 2 runtime to eliminate duplicates by
self-comparison of a V -element vote list.

If we instead could eliminate duplicates by sorting and merg-
ing, the O(NV) runtime would be reduced to O(N log N +
V log V). By instead sorting and binary searching, it would
be reduced to O(N log N +V log N). An even better approach
would be to eliminate duplicates by using lookup in a hash ta-
ble [20]; then (under randomness assumptions) expected run-
time would be reduced to O(N + V).

This is a fine plan, but it is not immediately clear it is possi-
ble without violating vote-privacy and anti-coercion guaran-
tees. For example, if each voter simply encrypts his credential
with some fixed deterministic encryption scheme, then hash-
ing becomes possible but the voter can prove (by visibly re-
encrypting) his vote is in the final list, and thereby sell his
vote. If each voter encrypts using a randomized encryption
scheme (possibly with more randomized re-encryption – un-
known to and uncontrollable by the voter – during mixings
later) then maybe the voter will not be able to sell his vote,
but hashing by credential now seems impossible since each
credential has 10300 possible randomized-encrypted forms.

7 Second idea behind new voting

scheme – “secret encryptions”

To allow the speedup idea to proceed, we devise a new tech-
nique: “secret encryptions.” These are encryptions for which
nobody knows either the encryption15 or decryption key. It is
possible for several parties to perform such an encryption co-
operatively by using “secure general purpose multiparty com-
putation” (SGMPC)16 on “shared-secret” data and using an
“immaculately conceived shared-secret” encryption key.

Definitions: A “shared secret” is data that is collectively
known to a set of sharers – any threshold-cardinality subset of
whom could recover it, after performing enough cooperative
computation – but no subthreshold set can recover the se-
cret, or even any partial information about it, no matter how
much computation they do with that part of the data that
they possess. An “immaculately conceived shared-secret” is a
shared secret which is generated cooperatively in such a way
that no individual ever knows the secret.17 Standard secret

14If I force you to provide 1009 cloned votes, this is not useful, since 1008 will be discarded, and I have no way to know if the remaining 1 vote
had a valid credential because the 1008 are discarded before comparison with the official credentials, and then a re-mix and re-encryption occurs,
so that finally, the remaining 1 vote might or might not have a valid credential – there is no way for me to tell or to tell which vote it is.

15More precisely, nobody knows the encryption process including all random bits used during that process, so that nobody can feasibly re-do it
to regenerate a given encryption from a given plaintext.

16Or: just iterated encryption (with broadcast ZK-validity proofs for each one) could also work.
17The power of immaculate secrets is that they can encode important information, but no individual can know (and hence misuse) that infor-

mation.

June 2005 4 7. 0. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

sharing schemes [25][12] provide immaculate conception ca-
pability, in addition to secret-share-deal-out, secret-recovery,
and cheater-detection protocols.

All secret-sharing schemes work, and prevent cheating, pro-

vided that at least a threshold-cardinality subset of the sharers
obey the protocol.

8 The protocol

Here is the voting scheme that results from grafting the
above two improvement ideas onto JCJ’s scheme. (Warn-
ing: this works, but only, as we shall see in §10, at immense
cost. We shall provide a third idea in §11 to reduce the
cost.)

procedure voting-scheme
1: [Set-up] Talliers and mixers generate the O(1) immacu-

late shared secrets (and derived quantities, such as broad-
cast public keys) that will be used in the remainder of the
protocol:
immaculate shared secret: D2, D4 D1 K J
derived public quantity: K1 K0

used in step #: 4, 9, 16 15 9 15, 16
2: Initially: we assume a bulletin board BB1 exists that ex-

hibits the list of registered voters (names and addresses)18

each with his (randomized ElGamal) encrypted credential
C. The encryption key K0 is publicly known but the cor-
responding decryption key is an immaculate shared secret.
Also the randomness used to perform each encryption is
an immaculate shared secret.19

3: [Voting] Election begins.
4: Voters submit tuples (B, P, T, C) to a bulletin board BB2,

where B is their encrypted ballot, P is a zero-knowledge
validity proof for that ballot, T is the time the ballot was
cast, and C is a (randomized ElGamal) encryption of that
voter’s credential (with different randomness from in step
2 of course). Each ElGamal encryption of C is done using
a common publicly known encryption key K1; the corre-
sponding decryption key is an immaculate shared secret.
(Voters can vote repeatedly, but only their last-cast valid
vote ultimately will be counted.)20

5: Verifiers meanwhile confirm that the votes on BB2 did ap-
pear only in an append-only manner and only with strictly
monotonically increasing timestamps. Otherwise BB2 is
revealed as cheating.

6: The entries on BB2 with invalid ZK-validity proofs P are
marked “bogus” and will not be used in what follows.21

(This would best be done interactively with the voting,
so that voters would immediately be notified they had a
bogus validity proof and therefore could try again.) All
P -datafields may be discarded in what follows.

7: [Anonymization of votes & elimination of dupli-
cate or unauthorized votes] The V non-bogus entries
of BB2 are run through a “mixnet.” The output is a shuf-
fling and re-encryption of the entries on BB2. The shuf-
fling permutation is known to nobody. The encryption
key is publicly known but the decryption function D2 is
known to nobody (it is an immaculate shared secret).

8: Each of the V outputs of this mixnet are dealt out to the
talliers (using the secret-sharing deal-out protocol). Call
the resulting list of shared secrets L2.

9: For each of the shared-secret entries y ∈ L2, the tal-
liers cooperatively compute Z(y) where Z is a func-
tion which, given an encrypted (B, T, C)-tuple, outputs
a (re)encryption of B, the decrypted plaintext of T , and
σ′ = FK(D2(C)) where D2(C) = σ is the decrypted
plaintext credential σ corresponding to C, and FK(·) is
the AES22 encryption function with immaculate-shared-
secret key K. (Note: the talliers never know σ except in
shared-secret or encrypted forms.) They post this output
publicly on BB3.

10: By hashing the σ′, remove all but the last-posted among
the BB3 entries with duplicate credentials σ. Then also
remove the time-stamp datafields T from all entries. The
result is posted as BB4.

11: The V ′ entries of BB4 (where V ′ ≤ V) are run through
a different mixnet. The output is a shuffling and re-
encryption of the entries on BB4. The shuffling permuta-
tion is known to nobody. The encryption key is publicly
known but the decryption function D4 is known to no-
body (it is an immaculate shared secret).

12: Each of the V ′ outputs of this mixnet are dealt out to the
talliers. Call the resulting list of shared secrets L4.

13: The N entries of BB1 are run through a different mixnet.
The output is a shuffling and re-encryption of the entries
on BB1. The shuffling permutation is known to nobody.
The encryption key is publicly known but the decryp-
tion function D1 is known to nobody (it is an immaculate
shared secret).

14: Each of the N outputs of this mixnet are dealt out to the
talliers. Call the resulting list of shared secrets L1.

15: For each of the shared-secret entries x ∈ L1, the talliers
cooperatively compute FJ (D1(x)) where FJ again is the
AES secret key encryption function, but now with key J

18BB1 would have to be created during a previous “registration” phase. We intentionally have not discussed that phase because we have nothing
new to say about it.

19To accomplish this, the key steps in creating BB1 could include the following. Joe Voter transmits an ElGamal encryption of his credential σ
to the EAs. They then re-encrypt it using immaculate-shared-secret randomness, transmitting a designated-verifier ZK-proof (;A.4) that they did
so, back to Joe; the result is posted to BB1 under Joe’s name and with Joe’s signature confirming he agrees the post is valid. Nothing stops corrupt
EAs from refusing to register Joe, or from registering enormous numbers of nonexistent “voters.” However, if the registered-voter list is available

for public view for months before it is used, then independent journalists, etc. could check a random sample of the list to become confident it had
a low (or high) degree of fakery.

20A voter who sees his vote has not appeared on BB2 can try to re-cast his vote from different vote-collection centers and different EAs until it
does appear!

21Attempts to submit extra fraudulent votes by bitwise-copying somebody’s previously submitted C and re-using it with a different B, are
defeated because each validity proof P is an indecomposable AND of an NIZK proof of knowledge of the plaintext form σ of C, and ballot-validity
NIZK proof for B. For extra confidence we could also demand that P include an NIZK proof of knowledge of the plaintext form of B. We could
also demand that P also incorporate (all “incorporations” via a secure hash function) bits from the timestamp T into its internal “challenges.”

22AES is the USA’s advanced encryption standard – or we could use any comparable secret-key cryptosystem or a “cryptographic hash function”
got by erasing some AES output bits.

June 2005 5 8. 0. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

(or merely a secure hash function, which is essentially the
same thing but with an agreed subset of its output bits
erased). They post this output publicly on BB5.

16: For each of the shared-secret entries y ∈ L4, the talliers
cooperatively compute Q(y) where Q is a function which,
given an encrypted (B, C)-tuple, outputs a (re)encryption
of B together with σ′′ = FJ (D4(C)). They post these σ′′s
publicly on BB6.

17: By hashing, delete those entries on BB5 whose encrypted
credential values σ′′ are not already present on BB6. The
resulting list of validly-credentialed votes is posted on
BB7. This whole step is carried out fully publicly.

18: Each of the N ′ < N entries on BB7 are dealt out to the
talliers, after removing their C-datafields which will no
longer be needed. Call the resulting list of shared secrets
L7.

19: [Final tallying] By cooperative computation using the
immaculately-shared decryption keys, the talliers com-
pute, for each entry u ∈ L7, the full decrypted ballot
B inside that u, and posts it on BB8.

20: Anybody can now trivially compute the election result
from BB8.

Obviously, the runtime of this scheme, with any bounded
number of talliers and mixers, is O(V +N) steps. Each“step”
takes constant time – but it could be a very large constant
because steps 9, 15, 16, 19 each involve using secure general-
purpose multiparty computation (SGMPC, §A.12) to simu-
late a circuit that computes the composition of an ElGamal
decryption and an AES encryption. That is a complicated
boolean circuit and converting a boolean circuit to a secure
multiparty computation on shared-secret input and output
data involves a large – but bounded! – slowdown factor.

9 How good is it (theoretically

speaking)?
Security guarantees: Our voting scheme appears to be cor-

rect, verifiable, and coercion-resistant. We have not pro-
vided formal proofs of these claims but instead – be-
cause our scheme may be regarded as merely a refine-
ment/speedup of the JCJ scheme – rely on their rea-
soning. We should have at least as much security as
JCJ since basing everything on our altered versions of
JCJ gives us immunity to the 1009- and timestamping-
attacks. These JCJ security guarantees seem stronger
than any other proposed set of voting security guaran-
tees in the literature. We gave [19]’s informal definition
of “coercion-resistance” in §2 (and they also gave a for-
mal definition in an appendix).

Speed: The total work is O(V +N) to process V votes cast by
N eligible voters. This is best possible. Unfortunately
“secure general multiparty computation” (SGMPC) is
employed as a “big gun” to overcome obstacles. This
causes the constants hidden in our “O” to be large. For-

tunately SGMPC is only used for small computations
(each one involving only a single vote and/or a single
small shared secret) each of which can be done indepen-
dently from all others and in parallel.

Versus BB-homo: Compare our JCJ-based scheme with
my other favorite secure voting method [6][7], which
is based on voters posting their encrypted and ZK-
validity-proved votes to their own name’s entry on a bul-
letin board, then adding up the votes in encrypted form
via homomorphic encryption, then finally a small coop-
erative computation decrypts the total. Both schemes
run in optimal O(V + N) work (and both schemes per-
mit heavy parallelization of that work). Our JCJ-based
scheme has better theoretical security guarantees than
BB-homo. But that security comes at a heavy price:

1. Storage and attacks based on storage limits: The
BB-homo scheme requires only O(N) storage, which is
better than our O(V + N) storage needs. This permits
an attacker to try to submit an enormous number of
votes and thus overwhelm our storage capacity and ef-
fectively cancel the election. The BB-homo scheme is
immune to such an attack. In practice this probably
would not matter because, if votes were submitted by
actual people in voting booths, then at most, say, 1 vote
could be cast per voting booth per minute, not permit-
ting V to become too large.

2. Communication: Mixnets inherently require a great
deal of communication between distrustful mixers, and
between mixers and verifiers. Our JCJ-based scheme
not only employs mixnets, but also giant public hash
tables and also cooperative computations performed on

each vote. That all adds up to a lot23 of communica-

tion both between distrustful talliers and mixers and
between them and verifiers. That is bad since the more
interactive and precisely timed communication we need,
the more attackable, complicated, and delicate every-
thing is, and the more that is required of each verifier
– contrary to the desire that verifiers lead simple lives.
Meanwhile, the BB-homo scheme requires almost no24

communication and almost none of it is interactive – the
homomorphic-totaling step can be carried out by only
one party and is an easy computation (and other parties
and verifiers could also carry it out) and the only coop-
erative part of the BB-homo scheme operates on only a
very small amount of data (the election-total), and the
verifiers can get away with doing only a small amount
of work and communication.

3. Study so far: The BB-homo scheme has been more
heavily studied both theoretically and experimentally
than our JCJ-based voting scheme.

Applicability: The crypto-voting community unfortunately
has consisted of computer scientists disconnected from

23An amount of order V + N .
24BB-homo employs only O(1) communication, aside from (1) the initial communication between the voter and BB when each voter is voting

(which is verified by the voter and BB themselves and results in a publicly posted ballot with ZK-validity proof) which is O(V + N) in all, and
(2) anybody making downloads from the BB. Although these communications also are of order V + N items, the same count as our JCJ scheme,
they are non-interactive. Also, verifiers can get away with only downloading and checking, say, 1000 random ballots from the BB, rather than the
entire BB worth – that is still good enough to get reasonable confidence less than 0.1% of the ballots are fraudulent. So in a very real sense the
communication requirements for BB-homo are much smaller than for our JCJ-based scheme.

June 2005 6 9. 0. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

political scientists. Therefore they have failed to recog-
nize the existence of many other (superior) kinds of elec-
tion methods besides the crudest method “plurality vot-
ing” (where a vote is the name of one candidate and the
most-named candidate wins).25 In particular, my own
“reweighted range voting”[27] is an excellent example to
keep in mind. RRV combines votes nonadditively26 to
determine winners, and RRV votes in an N -candidate
election are N -tuples of real numbers. The latter fact
allows voters to uniquify their votes by altering the low-
significance bits of those real numbers. These proper-
ties of RRV are enough to break every available cryp-
tographically secure voting scheme (except perhaps for
ones completely infeasible in practice) including the one
proposed here. More precisely, all schemes that employ
mixnets to anonymize votes, are useable only with elec-
tion systems in which the number of possible votes is
much smaller than the number of voters.27 Our new
scheme does have the advantage that it is applicable
to non-additive election systems such as “instant runoff
voting,” whereas schemes based on homomorphic en-
cryption only work for additive elections.28

10 Resource estimates I – this is not
practically feasible

Using the “mix and match” protocol for performing se-
cure general multiparty circuit-computations [17], a G-gate
boolean forward-flow logic circuit may be run on secret data
(with ZK verification proofs produced, if desired29) by Q co-
operating but mutually distrustful parties, in O(QG) expo-
nentiations in an elliptic curve group.

Our runtime is dominated by the cost of simulating a circuit
for ElGamal decryption and AES encryption. Assume such a
circuit contains G = 1010 logic gates. Assume O(Q) = 100.
Assume the number of votes cast is V = 109. The total com-
putation required to run an election then is equivalent to the
cost of performing about 1021 exponentiations in an elliptic
curve group.

This is an enormous cost. Given that we plan to pay that
cost, it surely will be worth designing and building special
purpose hardware for performing exponentiations in an ellip-
tic curve group. At present, software by Dan Bernstein can
accomplish an exponentiation in the NIST-224 elliptic curve
group in somewhere between 522000 and 1357000 Intel pen-

tium cycles, depending on the processor and certain auxiliary
conditions, which with a 4 GHz processor would take between
1/8 and 1/3 milliseconds. Suppose hypothetical special hard-
ware can speed that up to 1 microsecond. Suppose further
that we employ 107 such hardware devices in parallel. Then
the total computation would take 1014 microseconds, i.e. 108

seconds, i.e. 3 years. Conceivably I have been too conser-
vative in my estimates, in which case conceivably 100-times
greater speed is achievable. That would reduce the time to
“only” 12 days.

Even more horrible would be the prospect of communicating

ZK-proofs of the validity of all those computations to verifiers
who each have much less than government-scale resources.
However, our verifiers could decide simply to trust the secure
multiparty computations (based on the theory that enough
of those parties are honest, or enough of them are distrust-
ful enough of the others). That would greatly decrease the
verification work and the communication requirements to the
verifiers. However, the communication requirements among
the mutually-distrustful talliers could not be eliminated, and
they are huge. And since the talliers are mutually distrust-
ful, they would need to be in secure, physically well-separated
locations. The total number of bits communicated over long
lines would be on the order of 1024, which, even assuming
100-gigahertz bit rates, would take 3000 centuries.

Indeed, the original-flavor JCJ scheme, which employed
O(V 2) work, might have required say 100V 2 exponentiations
in an elliptic curve group, which with V = 109 would be
1020. Thus the quadratic-work algorithm actually would con-
sume comparable or less work than our linear-time algorithm
if V = 109, because the original quadratic scheme had a far
smaller constant hidden in its O thanks to the fact it does not
employ SGMPC. (The linear-work method only starts to win
once V > 1010, which exceeds current world population.)

We conclude from this that despite the enormous theoretical

improvement we have made by reducing JCJ’s work require-
ment from quadratic to linear, and despite the fact that our
scheme only uses O(V + N) secure general multiparty com-
putations that each operate on independent chunks of data of
small bounded size (< 1Kbit), our scheme so far still is not

practically feasible for use in large elections! Secure multi-
party computation simply is infeasible for large scale practical
use!

25We are happy to report the following recent exception [14].
26Some other examples [22][18] of non-additive election methods are “Instant Runoff Voting” (the single-winner case of Hare “single transferable

vote”) and Woodall’s “Descending Acquiescing Coalitions” method [29]. Since IRV votes are rank-orderings of the candidates there are N ! (or
more – approximately N !e – if ranking only a subset of the candidates is permissible; even more if equalities are permitted in rankings) possible
votes, which if N ! ≫ V is enough to permit uniquifying your vote. Woodall-DAC votes in full generality would be partial quasi-orders among N

candidates, of which there are approximately 2N2/4; in a 10-candidate election the number of possible DAC votes is [26][8] exactly 8,977,053,873,043
which would seem quite sufficient to allow you to uniquify your vote even with the entire world population voting.

27In an N-candidate election, if plurality voting is used the number of possible votes is N . If “approval voting” is used, the number is 2N (or 3N

for “approval voting with blanks”). If “Borda,”“instant runoff voting,” or other ranked-order systems are used, the number is N !. In “range voting”
and related systems the number of possible votes is ∞N , and even (∞ + 1)N if “blanks” are permitted.

28In principle, our new schemes is applicable to a strict superset of the election methods BB-homo schemes can handle. That is because any
additive method can be “bit split” into a weighted sum of a constant number of independent binary yes-no elections, and those can be handled
with the method of the present paper. In contrast, BB-homo schemes simply cannot handle non-additive election methods like IRV and Bucklin
voting.

29This is a simple matter, since in all of these schemes each party must produce ZK proofs for the purpose of convincing the other distrustful
parties that he is behaving correctly. So all we need to do is to broadcast these proofs to all verifiers in addition to just to the concerned parties.

June 2005 7 11. 0. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

11 Third idea: speedup to the point
of practicality

The above cost analysis makes it clear that, if we want to
turn this into something of practical, as opposed to merely
of theoretical, interest, then we need to eliminate almost all
SGMPC and replace it with far faster special purpose algo-
rithms. Having O(V + N) SGMPCs is too much. We need to
reduce that count down to O(1). Fortunately, it is possible to
do that.

The key insight is that there is, essentially, only one kind
of secure multiparty computation that we do a lot.30 It
consists of cooperatively ElGamal decrypting some shared-
secret randomized-ElGamal-encrypted data (but not unshar-
ing the resulting plaintext, so it remains secret) using an
immaculately-shared-secret decryption key, and, then cooper-
atively re-encrypting (or merely secure-hashing 31) that plain-
text result in some deterministic but secret manner (i.e. us-
ing an immaculately-shared-secret encryption key), and then
posting the final result to a BB.

Recall that an ElGamal encryption of a secret message M is
the tuple (gr, Mhr) where g and h are the public keys, (g, h,
and M are all elements of some public elliptic curve group of
large public-prime order) and r is a random integer.

Re-encryptions can be performed by re-using the same g and
h to get

(gr1gr2 · · · grm , hr1hr2 · · ·hrmM) (2)

which is just (gr, hrM) where r = r1 + r2 + · · · rm. This fact
allows our mixers to re-encrypt each message M that passes
through them using new randomness rj for each pass and
each message, and without it being necessary for any mixer
to know the plaintext M or to know the secret decryption key
ℓ where gℓ = h.

The decryption algorithm, only performable by somebody
who knows ℓ where h = gℓ, is to compute (gr)ℓ = hr from the
first tuple entry, then divide it out of the second tuple entry
to compute M .

If, however, we do not wish to produce M , but merely a deter-
ministically encrypted (or, better, hashed) version of it, then
we could agree instead to do this:

1. Compute (gr)ℓz = hrz from the first tuple entry;
2. Compute (hrM)z = hrzMz from the second tuple en-

try;
3. Divide to get Mz;
4. Output only a subset of Mz’s bits to get a deterministic

hash function of M .

In this procedure, M itself never is computed, but a hash
(namely, the first 50% of the bits of Mz) of M is. This
hash will now substitute for the roles played by FK and FJ

(and z will play the role of K or J) in the original protocol.

32 Here z, ℓ, and ℓz could be immaculately-shared secrets
never known to anybody individually. (Since their generation
and pre-sharing, and subsequent computation and broadcast
of g and h, all could be done at O(1) cost – which we regard
as negligible – we ignore that issue.33) That way M would
remain secret and unknowable.

Key point: It is still possible to raise group elements to the
power z (or ℓz) cooperatively, for example (in the case of z)
by each party successively raising it to a private power and
providing a ZK proof they did so, where the product of these
powers (not known to anybody) happens to be z.

Another way would be for each party to raise the original
element to a private power where now the sum of those pow-
ers happens to be z. By making each party perform several
such exponentiations and having various subset-sums among
the private powers be z, we can make this work even if some
parties cheat or refuse to cooperate [9][23][10][11] – then all
results finally are multiplied at the end. Most generally,
we could use a distributed “threshold ElGamal decryption”
scheme (§A.6).

12 Resource estimates II – this now
is practically feasible

This tremendously reduces the constant in our O(V +N) work
bound by eliminating SGMPC: The voting scheme now only
takes about 100(V + N) exponentiations in an elliptic curve
group. With V = 109 this is 1011 such exponentiations, which
with the postulated 1µsec exponentiation hardware could be
accomplished in 1.1 days even with no parallelism, and in 17
minutes with 100-fold parallelism.

The communication needs would be about 100(V + N) pack-
ets, each, say, 1 Kbit long, for a total of 1014 bits transmitted.
This would take 105 seconds, i.e. 30 hours, if everything were
transmitted over a single 1 GHz line.

Even with no special hardware, assuming 0.35 milliseconds
per exponentiation all the work would take about 10 hours
with 1000-fold parallelism. Buying 1000 computers at $1000
per computer would cost $106 which, assuming 108 voters,
would cost 1 cent per voter.

This seems practical.

13 Acknowledgement

Roberto S. Araujo’s questions about JCJ stimulated me to
develop this idea. It was Araujo’s suggestion that JCJ might
be susceptible to a speedup, and he wrote most of §A.7.

An earlier draft of this paperand was based on a flawed ap-
proach to speed up JCJ. Once I understood how to construct

30Namely, this, or some subset of this, is done in our protocol steps 9, 15, 16, 19.
31Hashing seems a slightly superior idea to encrypting for our purposes since it should yield extra security since the plaintext is not reconstructible

from a hash for both information-theoretic and computational-complexity reasons.
32In the special case z = 1 the above 4-step protocol becomes simply decryption, which is what is wanted in step 19 of the original protocol.
33Of course, were this paper’s protocol to be implemented, one would want to devise good protocols for this part also. However, we refrain here,

for two reasons: (1) it keeps our paper simple and general SGMPC theorems assure us that such protocols must exist. Even if they are inefficient
this does not matter much because they are only run O(1) times. (2) Section 3.2.4.2 of [15] and section 3.3 of [16] both already presented multiparty
protocols to allow secret-sharers to create a random immaculate shared-secret triple (a, b, c) with c = ab and a and b both uniform random (all
mod P), and to ZK-prove that c = ab. Good protocols of this sort were first invented by Donald Beaver.

June 2005 8 13. 0. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

an attack on that earlier approach, the present paper’s ap-
proach suggested itself as a simpler and flaw-free version of
the earlier one.

References

[1] Masayuki Abe: Mix-networks on permutation networks, ASI-
ACRYPT (1999) 258-273, Springer LNCS #1716. Corrections
and extensions: Masayuki Abe & Fumitaka Hoshino: Remarks
on Mix-Network Based on Permutation Networks, Public Key
Cryptography (2001) 317-324, Springer (LNCS #1992).

[2] M.Bellare & S.Micali: Non-interactive oblivious transfer, pp. 547-
557 in CRYPTO 89=Springer LNCS #435.

[3] M.Ben-Or, S.Goldwasser, A.Wigderson: Completeness theorems
for non-cryptographic fault-tolerant distributed computations,
ACM Symposium on Theory of Computing STOC 20 (1988) 1-10.

[4] I.F.Blake, G.Seroussi, N.P.Smart: Elliptic Curves in
Cryptogaphy, London Math’l Society Lecture Notes
#265, Cambridge University Press 1999. Errata
www.hpl.hp.com/infotheory/errata082900.pdf.

[5] Fabrice Boudot: Efficient Proof that a Committed Number Lies
in an Interval, pp.431-444 in Proc. of EuroCrypt 2000, Springer
Verlag LNCS #1807.

[6] Ronald Cramer, Matthew Franklin, Berry Schoenmakers, Moti
Yung: Multi-Authority Secret-Ballot Elections with Linear Work,
pp.72-83 in EuroCrypt 1996, Springer LNCS #1070.

[7] R. Cramer, R. Gennaro, B. Schoenmakers: A secure and opti-
mally efficient multi-authority election scheme, pp.103-118 in Ad-
vances in Cryptology EUROCRYPT 1997, Springer LNCS#1233.
Journal version appeared in: European Transactions on Telecom-
munications 8 (Sept.-Oct. 1997) 481-490.

[8] S.K.Das: A Machine Representation of Finite T0 Topologies,
J.ACM 24,4 (1977) 676-692.

[9] Yvo G. Desmedt & Yair Frankel: Threshold cryptosystems,
Crypto 89 (1990) 307-315 (Springer LNCS #435).

[10] Yvo G. Desmedt: Threshold cryptography, European Trans.
Telecommunications 5,4 (1994) 449-457.

[11] Yvo G. Desmedt: Some recent research aspects of threshold
cryptography, Information Security Proceedings (1997; Springer
LNCS #1396) 158-173.

[12] R.Gennaro, M.O.Rabin, T.Rabin: Simplified VSS and fast-track
multiparty computations with applications to threshold cryptog-
raphy, Proc. ACM Symposium on Principles of Distributed Com-
puting PODC 7 (1998) 101-111.

[13] Jens Groth: A Verifiable Secret Shuffle of Homomorphic Encryp-
tions, pp. 145-160 in Practice and Theory in Public Key Cryp-

tography - PKC 2003 (Springer LNCS #2567).

[14] Jens Groth: Non-interactive Zero-Knowledge Arguments for Vot-
ing, pp. 467-482 in Applied Cryptography and Network Security -

ACNS 2005 (Springer LNCS #3531).

[15] Martin Hirt: Multi-Party Computation: Efficient Protocols, Gen-
eral Adversaries, and Voting, PhD thesis, ETH Zurich, 2001.
Reprint as vol. 3 of ETH Series in Information Security and Cryp-
tography, ISBN 3-89649-747-2, Hartung-Gorre Verlag, Konstanz,
2001.

[16] Martin Hirt & Jesper Buus Nielsen: Upper bounds on the com-
munication complexity of cryptographic multiparty communica-
tion, Cryptology ePrint Archive, Report 2004/318, Nov 2004,
http://eprint.iacr.org/.

[17] Markus Jakobsson & Ari Juels: Mix and match: secure function
evaluation via ciphertexts, Asiacrypt (2000) 162-177, Springer
(LNCS #1976).

[18] J. Economic Perspectives 9,1 (1995) is a special issue on voting
methods and is a recommended way to learn about them.

[19] Ari Juels, Dario Catalano, M.Jakobsson: Coercion-
resistant electronic elections. One older version was
at Cryptology ePrint Archive: Report 2002/165
http://eprint.iacr.org/; latest version on Juels web page:
http://www.rsasecurity.com/rsalabs/node.asp?id=2030 as of
June 2005.

[20] Donald E. Knuth: Sorting and Searching (Art of Computer Pro-
gramming vol. 3) Addison-Wesley 2nd ed. 2003.

[21] Ph.D. MacKenzie, Th.Shrimpton, M.Jakobsson: Threshold
Password-Authenticated Key Exchange, CRYPTO (2002) 385-
400.

[22] Hannu Nurmi: Voting procedures: A summary analysis. British
Journal of Political Science 13,2 (1983) 181-208.

[23] T.P.Pedersen: A threshold cryptosystem without a trusted party,
Eurocrypt 91 (Springer LNCS #547) 522-526.

[24] Claus-Peter Schnorr: Efficient Signature Generation by Smart
Cards, J. Cryptology 4,3 (1991) 161-174.

[25] Adi Shamir: How to share a secret, Commun.ACM 22,11 (1979)
612-613.

[26] N. J. A. Sloane: The On-Line Encyclopedia of Integer Sequences
(2005) http://www.research.att.com/∼njas/sequences/. See
sequence A000798.

[27] Warren D. Smith: Reweighted Range Voting – new multiwinner
election scheme, #78 at
http://math.temple.edu/∼wds/homepage/works.html.

[28] Warren D. Smith: Cryptography meets voting, #80 at
http://math.temple.edu/∼wds/homepage/works.html.

[29] Douglas R. Woodall: Monotonicity of single seat preferential elec-
tion rules, Discrete Applied Maths. 77,1 (1997) 81-98.

A Appendix: Highly abbreviated re-

view of zero knowledge proofs and
other known tools

In the main text we have alluded to (or assumed use of) vari-
ous known cryptographic tools which we did not explain there.
We now provide details about them. Some of our remarks
will also be important for achieving good efficiency in prac-
tice. The survey [28] gave the details of many such ZK-proofs
and cryptographic voting schemes, including BB-homo voting
schemes, so most of the things we discuss in this appendix are
also treated there, usually more extensively and with more
sources cited.

June 2005 9 1. 1. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

A.1 ZK proofs of same exponent
Suppose Peter Prover knows that two publicly known quan-
tities x = gℓ and y = hℓ have the same discrete logarithms ℓ
(to publicly known respective bases g and h) in some group of
large34 prime order P . (We recommend working in an elliptic
curve group.) He wishes to convince Vera Verifier of this –
but without revealing what ℓ is.

The procedure (due to D.Chaum & T.P.Pedersen in the early
1990s) is as follows:

1. Peter chooses random r mod P (but keeps it private);
2. Peter computes and prints a = gr and b = hr;
3. Vera chooses random c mod P and tells it to Peter;
4. Peter computes and prints z = r + ℓc mod P ;
5. Vera verifies that gz = axc and hz = byc.

after which (assuming the two tests in the final step both
succeeded) Vera has very high confidence. (But observe: if
Peter knew Vera’s c in advance, then he could have chosen r
nonrandomly and “forged” a proof.)

This protocol can be made non-interactive by the Fiat-Shamir
trick: make the challenge c instead be a standard secure hash
function of (x, g, y, h, a, b), which Peter computes and pub-
lishes, and Vera merely verifies.

A.2 Applications to ZK proof of encryption,
ZK proof of knowledge of plaintext

By using the above NIZK protocol, Peter can convince Vera
that he has produced an ElGamal encryption (gℓ, hℓM) of a
message M provided by Vera, but without revealing the se-
cret key ℓ (note that the group elements g and h are public
keys). Or he can show that (gr+ℓ, hr+ℓM) is an ElGamal
re-encryption of the original encryption, without revealing r.

Also, he can prove knowledge of ℓ in the encryption (gℓ, hℓM),
thus proving knowledge of the plaintext M , but again without
revealing either ℓ or M .

A.3 ANDing and ORing ZK proofs
To ZK-prove the logical AND of two claims, simply present
ZK proofs of them both. What we call an indecomposable

AND of two NIZK proofs involves “challenges” inside it that
are constructed from a secure hash function of both compo-
nent proofs. The point of this is that some enemy cannot
now surgically excise the component NIZK proofs and glue
them together with other components to get his own NIZK
ANDed proof of something else – well, he can, but the result-
ing proof will not have the hashing property and hence can be
immediately revealed as having been produced by surgery by
somebody unauthorized, as opposed to having been produced
by an original authorized prover.

Logical ORing is trickier. Roughly speaking (adjustments
may be needed in particular cases), the procedure is sum-
marized by the mnemonic

ZK-proofc(A∨B) ≡ ZK-proofd(A)∧ZK-proofe(B)∧{d+e = c}
(3)

where the subscripts c, d, e of the proofs denote the integer
“challenges”presented to the prover by the verifier. The orig-
inal proofs considered independently each had their own chal-
lenges d and e. But the combination proof has only one chal-
lenge c = d+e. The reason this works: the prover can“forge,”
i.e. produce himself ahead of time, one of the challenges d OR
e, and hence finds it feasible to “fake” that ZK-proof; but the
other challenge is then determined by the linear35 constraint
d + e = c and the verifier’s randomness in choosing c, and
hence is infeasible to forge. (The prover publishes the values
of d and e.) That forces the prover to genuinely prove one
of the component proofs. If the challenges in the component
proofs in fact could be got non-interactively via a secure hash
function (an example of this was above) then the combination
ZK-proof also can be made non-interactive.

A.4 Designated-Verifier ZK-proofs
A brilliantly simple idea. To ZK-prove statement X in such
a way that only Bob will believe your proof: ZK-prove: “X
OR (proof of knowledge of Bob’s secret key).”

Bob’s thoughts: “of course, this person does not know my
secret key, so X must be true.”

Alice’s thoughts: “Bob could have told this person his key
(actually in typical use ‘this person’ is Bob). So I have no
reason to believe X .”

Note that Bob cannot re-use the proof he is given to convince
anybody else of X .

A.5 Commitments
Somebody can “commit” n bits of information by publish-
ing an AES-like encryption of a (n + 2s)-bit message con-
sisting of those n bits padded with s one-bits followed by s
random bits where s is a security parameter. He can later
“reveal” the committed bits by revealing his (s-bit) secret en-
cryption/decryption key. (Other protocols also are possible,
e.g. [12].)

A.6 Cooperative decryption [9]
In threshold ElGamal decryptions, at least t (for some t with
1 ≤ t ≤ m) decryptors need to cooperate to decrypt a mes-
sage [9]. This can be accomplished by having the decryption
exponent K be the constant term P (0) of a degree-(t − 1)
polynomial where decryptor j knows Kj = P (j) but no-
body individually knows P (0). Then the value of P (0) is
deducible by Lagrange polynomial interpolation from t values
of P (x). Lagrange polynomial interpolation is a weighted sum
(the weights Lj are Lagrange interpolation coefficients, and
may, after a renormalization, be taken to be public integers);
the effect of exponentiation to the power K may be got by
private exponentiations to the secret Kj powers followed by
public exponentiations to the Lj power and a final producting
step to combine it all together:

xK = x
P

j
LjKj =

∏

j

(xKj)Lj . (4)

34“Large” means ≈ 2256. We recommend elliptic curve groups [4]. Warning: We use multiplicative group notation throughout, although most
elliptic curve authors use additive group notation.

35Actually the “+” could instead be a bitwise XOR or a group-multiplication – any of these, in general, would yield a valid OR-combination
proof.

June 2005 10 1. 6. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

Each decryptor j should broadcast NIZK-proofs he really is
exponentiating with his correct private exponent Kj . Note:
with this scheme one decryptor will be able to cheat once by
using a bogus Kj (thus learning the product but not reveal-
ing it to the others) but then immediately will be spotted
as a cheater and permanently excluded from the protocol.
This cheat effort could perhaps break privacy on one vote, at
tremendous personal cost to the cheater. This seems an ac-
ceptably small security leak. The small magnitude of this
leak could be reduced further by forcing all decryptors to
“commit” their xKj values before revealing them, then un-
veiling the commitments in “verifiably random” order. That
way, a cheating decryptor would have a ≥ (t−1)/m chance of
being unveiled as a cheater before enough other information
was available for him to gain the benefit from that cheating.
Finally, (albeit expensively) if we desire the leak-magnitude
could be reduced further still, to essentially zero, by use of
“bit-by-bit revelation” techniques (§A.9).

A.7 Plaintext equality test (PET):

An important primitive, used in [21][17] and needed by the
voting protocol presented in [19] verifies that two ciphertexts
(ElGamal encrypted using the same public key but differ-
ent randomness) are encryptions of the same plaintext. This
is achieved by dividing the two ElGamal encryptions and
verifying that the results encrypt the value 1. Thus, let
(α, β) = (gr, M1h

r) and (γ, δ) = (gs, M2h
s) be the two El-

Gamal ciphertexts where r and s are random; if M1 = M2,
then (α/γ, β/δ) = (gr−s, 1hr−s).

To complete the verification, the resulting encryption
(gr−s, 1hr−s) must be proved to encrypt the value 1. That
can be accomplished by anybody who knows the decryption
key ℓ where h = gℓ (so M = Mhr/(gr)ℓ); or by joint de-
cryption by mutually distrustful parties who had previously
secret-shared [25] the ElGamal decryption key. Since 1z = 1
whereas with high probability in a group of large prime or-
der xz 6= 1 if x 6= 1 and z is random, it suffices to pro-
duce, not the decryption itself, but rather a random power
of it (Mz = (Mhr)z/((gr)z)ℓ), thus definitely revealing zero
knowledge about the plaintext even if the“random”quantities
r and s had in fact been maliciously chosen.

A ZK proof that the correct decryption was in fact produced,
i.e. that the correct exponent ℓ was in fact used (but without
revealing ℓ) could then be produced with the aid of the pre-
ceding “ZK proof of same exponent.” (Similarly we ZK-prove
that the same exponent z was used both times in the version
with z’s.)

A.8 ZK-proofs of ballot validity and interval
membership

In a yes-no election, a valid vote is an encryption of “1”or “0.”
A voter could provide an ORed ZK-proof that some ElGamal
cryptotext (gr, hrkM) encrypts either M = 1 or M = 0, but
without revealing which.

In an election in which votes consist of integers in a range
[0, 2b − 1], i.e. b-bit integers, the voter could simply provide

the elementwise product of b ElGamal 2-tuples,

b−1∏

j=0

(grj , hrj k2
jMj) (5)

where each Mj was proved as before to be a 1-bit number.

Boudot [5] discussed more general and supposedly more ef-
ficient (for large b) interval-membership ZK-proofs than this
simple procedure. However, his “more efficient” procedure
actually is “less efficient” and “more complicated” than this,
because Boudot’s methods depend for their security on the
assumption that integer factorization is hard, whereas we de-
pend on the assumption that discrete logarithms in elliptic
curve groups are hard.36 That allows us to use much shorter
key lengths to get the same security, causing just one step

in Boudot’s method to take more work than our entire pro-
cedure – rendering irrelevant the fact that Boudot’s meth-
ods have fewer steps! However, [28] both pointed out this
error and repaired it by devising replacements for Boudot’s
ZK-proof components that depend instead on elliptic-curve
discrete logarithm assumptions.

Efficient ZK-validity proofs for “approval voting” and “Borda
voting” (and several other kinds of voting) type ballots are
discussed in [14]; many of them are based on mixnets.

Fortunately, to a large extent we do not need to worry about
possible “data format incompatibilities” between our election
system and somebody’s ZK ballot-validity proof, because our
election system does not care how the ballots are encrypted,
so long as they can be mixed and ultimately decrypted. Groth
[14] worried extensively about that issue because he was in-
terested in making his ballots compatible with later process-
ing by homomorphic-encryption vote-totaling schemes [6][7].
We do not have to. Therefore, we can handle any voting
method with a finite number of possible types of votes by sim-
ply encoding the vote as an integer (if there are 55 possible
votes, then an integer in [0, 54]) in which case an interval-
containment ZK-proof is all we need.

Similarly, we also do not particularly care what underly-
ing vote-combining system (plurality, Borda, approval, etc.
[22][18]) is employed. That is an advantage of systems like
ours that ultimately reveal and post all the plaintext votes on
a BB. All of Groth’s ballot-validity proofs [14] are useable.

A.9 Bit-by-bit revelation
Suppose several parties have their own individual secrets, and
wish to reveal them to each other. However, each trembles in
horror of the possibility that he will foolishly reveal his own
secret before the others, allowing them (while laughing hys-
terically at his idiocy) to suddenly terminate the protocol and
learn his secret.

This problem is soluble by having each party release one bit of
his secret at a time (along with a ZK-proof the bit was valid),
thus causing no party to be able to quit with more than a
single-bit advantage. If each secret is a b-bit integer known to
all in encrypted form as in EQ 5, then one can simply reveal
another bit Mj each time. Recall each Mj had already been
ZK-proven to be a single bit via an OR of ZK-proofs it was

36Please regard all the multiplicands in EQ 5 as elements in an elliptic curve group with multiplicative group-notation.

June 2005 11 1. 10. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

either 1 or 0. By revealing the two component proofs (one of
which was“forged”) in full rather than just their OR, that Mj

becomes revealed to all.

A.10 Shamir’s Secret sharing [25]
The dealer who wants to share a secret S selects a random
polynomial

F (x) = S + r1x + r2x
2 + · · · + rT−1x

T−1 (6)

of degree < T , and sharer j gets37 Sj = F (j) as his share of
the secret for j = 1, 2, . . . , Q. Here the rk are random inte-
gers mod P for some public prime P , and S is another. Any
T sharers can reconstruct F (x) and hence determine S by
polynomial interpolation mod P , but T − 1 sharers are insuf-
ficient. This scheme is “linear,” i.e. a summed secret Q + S
corresponds to summed secret shares Qj + Sj . Immaculate
shared secrets S can be got by having each sharer generate his
own random secret, then (acting as dealer) deal it out, and
then the sum of all of them is S.

The scheme as we have described it so far is vulnerable to
cheating dealers (who distribute bogus shares and thus do
not really reveal their secret) or cheating sharers (who“reveal”
bogus shares and thus learn the secret while honest players
do not). “Verifiable” secret-sharing schemes [12][15] do not
have those weaknesses. They require the dealer to commit
his secret before dealing it out, and commit to all the shares
he deals out, and to ZK-prove that the share-commitments
legitimately correspond to the committed secret. They also
require the sharers who decide to reveal their shares, then
to open the share commitments, thus proving they are not
revealing a bogus share.

A.11 Mixers
A “mixer” inputs N encrypted data items and outputs those
same N items, only in a shuffled order and with each data item
re-encrypted. The mixer wishes to convince everybody (by
providing a ZK-proof) that he just did exactly that, but with-
out revealing the shuffling permutation or the re-encryption
transformations.

Unfortunately JCJ [19] cited Furukawa-Sako which (its au-
thors later realized) is a flawed mixer scheme because their
proofs actually are not zero-knowledge. They also cited a
complicated mixnet scheme due to Neff, which I do not have
confidence in. The allegedly best mixer scheme now available
is by Groth [13] – and it seems perfectly suited to our pur-
poses since it employs ElGamal encrypted inputs and (shuffled
re-encrypted) outputs with the same ElGamal public keys in
both cases.

Unfortunately Groth’s mix-scheme is also complicated and I
do not understand it fully.38

Therefore I remark that three extremely simple mixnet
schemes, all of which can employ non-interactive39 valid-
ity ZK-proofs, are described in [28] sections 4.12 (first two

schemes) and 7.1 (third scheme, similar to Abe’s [1]). Their
simplicity is achieved at the respective costs of either
① A large constant hidden in the “O(n)” work bound.
② Allowing the mixer to have a reasonable probability of
“cheating” on a bounded number of votes (m added, deleted,
or altered “cheat votes” =⇒ probability ≥ 1− 2−m of getting
caught), and furthermore this scheme reveals N bits worth of
partial knowledge about the shuffle, or
③ causing the total work to be of order N log N (and with
order log N mixer stages) rather than the optimal O(N) and
O(1) achieved by [13].

I believe that if N is large, then in practice for our voting
needs, these imperfections do not matter and are worth ac-
cepting to gain the benefits of simplicity.

We now explain scheme ②, because it seems to be the most
practically useful scheme available for our voting purposes.

1. Shuffler outputs all N elements of B, and C (2N in all)
in encrypted form. Here A is the N encrypted input
items, B is the N re-encrypted output items, and C is
a third random shuffling and re-encryption of those N
items.

2. Verifier presents random challenge-seed κ.
3. Shuffler uses κ as a pseudo-random seed to generate (in

a standard, cryptographically strong way) a 2-coloring
of C with ⌊N/2⌋ red and ⌈N/2⌉ disjoint blue elements.
He publishes this coloring. Shuffler now reveals the re-
encryptions used to generate the red C’s from the cor-
responding A’s (and reveals the correspondences) and
similarly to generate the B’s that come from the blue
C’s.

After this, the verifier is confident – unless the shuffler
can break the cryptosystem or enjoyed an exceedingly vast
amount of luck – that the shuffler has truly shuffled (and re-
encrypted) the N elements of A to get B, except perhaps
for a bounded number m (independent of N) of exceptional
unshuffled or wrongly-encrypted elements.

This scheme can be made completely non-interactive by hav-
ing the shuffler generate κ himself as a standard cryptographic
hash function of everything he output in step 1; and pro-
vided N is larger than the security parameter (encryption-key
bitlength) the scheme remains secure. However, because an
evil shuffler can usually make a probability-ǫ event happen by
“working 1/ǫ times harder”retrying different shuffle+proof at-
tempts, for our voting purposes it seems preferable in practice
to use the almost non-interactive protocol we just gave. The
challenge κ in practice would best be produced by a consor-
tium of verifiers by applying a standard secure hash function
to everything the shuffler output in stage 1, padded with ran-
dom bitstrings then contributed by each verifier.

The scheme we just gave has the disadvantage that it reveals

≈ N bits of partial knowledge about the shuffle, namely we

37Via transmission over a private channel or publicly via cryptography.
38We also note that Groth claimed his scheme involved ≈ 6N exponentiations in the proof and another 6N in the verify, for 12N total, supposedly

a new record improving on the previous best total 18N by Furukawa & Sako. However, Groth neglected to mention that F&S had pointed out that
their 18N was reducible “‘to the work-equivalent of ≈ 5N exponentiations,” and also neglected to mention that F&S’s scheme was flawed. Groth
also uncritically cited Neff.

39Groth claimed in email to WDS that his mix can be made non-interactive using a Fiat-Shamir-type trick. However, this issue was not addressed
in his paper [13].

June 2005 12 1. 11. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

know that the ⌊N/2⌋ red items do not get shuffled to the
⌈N/2⌉ blue locations. This “disadvantage” hardly seems to
matter for us (since, e.g, N bits is asymptotically negligible
compared to the number log2 N ! of bits required to specify the
shuffle fully). But if you really care, it could be eliminated (at
the cost of O(N) additional proof and verification work) by
ZK-proving, for each of the red C-items, that it corresponds
to either of two specified A-items, but without saying which
(and let all these A-pairs be disjoint). That can be done using
an “OR of two ZK-proofs.”40

Another (tiny) disadvantage of this scheme (which again
should not matter in our voting application41) is the fact
that it allows a cheating shuffler to have a 2−m chance of
cheating on m items without being detected. That chance
could be reduced to 2−mf by forcing him to provide f paral-
lel proofs (each with different C and using further bits out-
put by the pseudo-random generator) for any desired integer
f ≥ 1. Alternatively, the cheat-chance could be increased
to 2−mf where now 0 < f < 1, by having the verifier only
verify a fraction f (chosen randomly) of the prover’s claims
about C-items – saving a huge amount of verification work
in the limit f → 0+. This also would save proving-work be-
cause the prover would first say (in stage 3) exactly what he
was going to prove, then the verifier could say (in stage 4)
which of those proofs he actually wanted to examine (which
again could be done using a very short challenge used as a
seed for a standard strong pseudorandom number generator),
and then in stage 5 the prover would produce only the re-
quested proofs. This“partial verification”still seems adequate
in most large scale voting applications even when f = 0.02
and is tremendously less costly – in the f → 0+ limit the
shuffler’s total work reduces to only the 4N exponentiations
needed to perform the 2N ElGamal re-encryptions needed to
produce B and C; meanwhile the verifier’s work is of order
O(Nf). The shuffler→verifier communication requirements
are O(Nf) group-elements and the verifier→shuffler commu-
nication requirements are equivalent to O(1) group-elements.

When mixing tuples we need to make the mixer provide va-
lidity ZK proofs that it is indeed permuting tuples bodily;
this can be done trivially by ANDing the usual ZK-proofs for
tuple components. Also, we remark that Groth’s mix-scheme
(see the final two sentences of [13]) can be efficiently re-used

for the purpose of proving additional batches of N data were
mixed using the same shuffle-permutation.

A.12 Secure general-purpose multiparty
computation (SGMPC)

The goal of SGMPC is to set up a protocol under which sev-
eral mutually distrustful parties can perform any computation
(specified by an arbitrary forward-flow circuit made of boolean
logic gates) in such a way that ① the input bits, output bits,
and intermediate bits all only are available in encrypted form
throughout the entire process, so that no individual finds it
feasible to deduce the unencrypted form of any of those bits.
Further, ② this should be done in such a way that each party,
and indeed any outside observer, is convinced that the com-

putation was carried out correctly, and ③ a super-threshold
subset of the parties can (if they agree to do so) decrypt any
particular bit.

The first demonstration [3] that SGMPC is possible was based
on Shamir secret-sharing [25] of each bit, with SGMPC proto-
cols devised to perform 2-bit logic operations on secret-shared
bits. In fact, they even showed how to add, multiply, and gen-
erate immaculate random shared-secret finite-field-elements.
The addition and randomization methods are trivial, but the
multiplication method is complicated (see section 3.1 of [15]
for an excellently clear description).

Donald Beaver invented a brilliantly simple idea for avoid-
ing the difficulty of multiplying shared secrets. It involves a
preparatory phase of first generating and distributing a pool
of triples (a, b, c) of random constants satisfying c = ab to
all secret-sharers. Beaver’s trick made SGMPC far closer to
being practical [16].

Joe Kilian gave another demonstration of SGMPC in which
everything was based on only one remarkably simple-sounding
primitive cryptographic operation, which Kilian called “obliv-
ious transfer.” Peter→Vera OT is the digital equivalent of the
following story: Peter puts bits b1 and b2 into two envelopes,
labeled 1 and 2. Vera picks one of the envelopes (Peter does
not know which) and looks inside it; the other envelope is
burned without opening it.

Bellare and Micali [2] showed how to implement OT using an
ElGamal-crypto-like software protocol. OT also can be imple-
mented using trusted physical devices, e.g. actual envelopes,
quantum cryptography, etc. However, Kilian’s OT-based con-
struction, while perhaps important theoretically, appears too
inefficient and complicated to be a practically important way
to do SGMPC.

The presently best known (in terms of efficiency and simplic-
ity) method of implementing SGMPC is the “mix and match”
method [17]. The full technique is too complicated to describe
here, so we only sketch it. It involves ① producing (by means
of a mixnet) an equivalent logic circuit but with “randomly
scrambled truth tables” for the logic gates; this circuit is not
known to any individual party because the truth tables are
stored in encrypted form; ② we match the input-bit of each
logic gate with the output-bit of its predecessor gate, (or if
there is no predecessor-gate, with the initial encrypted input
bits to the whole circuit) by means of distributed plaintext-
equality-tests; ③ Finally, the last gate produces the output
bit in encrypted form; the players jointly decrypt it (and any
other bits they want to publish in un-encrypted form). The
joint decryptions need to be accompanied by ZK-proofs by
each player that they are correctly doing their part in each.

The whole mix and match protocol requires O(QG) modu-
lar exponentiations worth of work to produce a verification of
circuit operation (for a circuit with G gates, with Q distrust-
ful computing parties), assuming nobody cheats. If anyone
cheats, the cheater is immediately spotted and the procedure
is terminated. (It can be restarted with the corrupt party
excluded.)

The work-expansion factor involved in converting a circuit

40If N is odd there would be a leftover A-item, which would have to be dealt with using a triple instead of a pair, just for it.
41Because the benefit to the cheating shuffler of being able to mess with a few votes, is not worth the tremendous cost to him of being revealed

as a proven fraud, if the probability of the latter is at all substantial.

June 2005 13 1. 12. 0

Smith typeset 22:54 9 Sep 2005 new crypto voting scheme

from normal to SGMPC operation, although “bounded,” is
very large – each bit operation becomes O(Q) modular ex-
ponentiations, i.e. about O(Q) · 109 bit operations for a

109-gate circuit! For this reason, it presently only is tech-
nically/economically feasible to run very small computations
in SGMPC mode.

June 2005 14 1. 12. 0

