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Abstract

The Gibbard-Satterthwaite theorem states that every non-
trivial voting method among at least 3 alternatives can be
strategically manipulated. We prove a quantitative version
of the Gibbard-Satterthwaite theorem: a random manipu-
lation by a single random voter will succeed with non-
negligible probability for every neutral voting method
among 3 alternatives that is far from being a dictatorship.

1 Introduction

A social choice function aggregates the preferences of all
members of society towards a common social choice. For-
mally, let [m] be a set of m alternatives (candidates), over
which n voters have preferences. The preferences of the
ith voter are specified as xi ∈ L, where L denotes the
set of full orders over [m] (thus L corresponds to Sm).
Using this notation, a social choice function is a function
f : Ln → [m]. We will also write the vector x of prefer-
ences as (xi, x−i) when wanting to single out the vote of
the i’th voter, or as (x′i, x−i) after changing the ith coor-
dinate to x′i.

There is a vast literature on the design of social choice
functions, also called voting methods or election rules.

One of the basic desired properties from a social choice
function is implied by our thinking of them as “asking
the voters about their preferences”: voters should not
gain from reporting false preferences rather than their true
ones. Formally:
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Definition 1. A (profitable) manipulation by voter i of a
social choice function f at profile (x1, . . . , xn) is a pref-
erence x′i such that f(x′i, x−i) is preferred by voter i to
f(xi, x−i).

Intuitively, if such a manipulation exists, then voter
i would be better off by “voting strategically”: report-
ing x′i as his preference rather than the true xi. The
Gibbard-Satherwaite theorem [Gib73, Sat75] states that
every “non-trivial” social choice function is strategically
vulnerable, where “nontrivial” means not a dictatorship
and whose range contains at least three alternatives. In
this paper we ask how often does this happen: for what
fraction of profiles does such a manipulation exist?1 Can
it be tiny? Perhaps exponentially small? While some pre-
vious work studied specific classes of social choice func-
tions (e.g. [Ke93]), we provide a fairly general negative
answer for the case of 3 alternatives. Let us define the fol-
lowing quantification of the probability of a random ma-
nipulation:

Definition: The manipulation power of voter i on a
social choice function f , denoted Mi(f), is the probabil-
ity that x′i is a profitable manipulation of f by voter i at
profile (x1, . . . , xn), where x1, . . . , xn and x′i are chosen
uniformly at random among all full orders on [m].

This definition assumes a uniform distribution over
preferences, which while certainly unrealistic, is the natu-
ral choice for proving a “lower bound”2. In particular, the
lower bound, up to a factor δ, applies also to any distribu-

1Functions that are very close to being a dictatorship may have a very
small number of such manipulable profiles (e.g. [MPS04]), so this paper
is concerned with social choice functions that are far from being trivial.

2Note that we cannot hope for an impossibility result for every dis-
tribution, e.g. since for every social choice function we can take a distri-
bution on its non-manipulable profiles.



tion that gives each preference profile at least a δ fraction
of the probability given by the uniform distribution.

To formally state our main theorem, we will require
a few standard definitions: A social choice function is
neutral if the names of the candidates “do not matter”,
formally, if f commutes with permutations of [m], i.e.
f(σ(x1), . . . , σ(xn)) = σ(f(x1, . . . , xn)). A dictator-
ship is a social choice function that always chooses the
top choice of a fixed voter. The distance of f from a dicta-
torship is simply the minimal fraction of values that need
to be changed to turn f into a dictatorship.

Main Theorem: There exists a constant C > 0 such that
For every ε > 0, if f is a neutral social choice function
among 3 alternatives for n voters that is ε-far from dicta-
torship, then:

∑n
i=1 Mi(f) ≥ Cε2.

This immediately implies that for fixed ε, some voter
has non-negligible manipulation power maxi Mi(f) ≥
Ω(1/n). It is easy to see that one cannot bound
maxi Mi(f) below by a constant independently of n since
for the plurality voting method Mi(f) = θ(1/

√
n) Fur-

thermore, for the plurality voting method only for a 1/
√

n
fraction of profiles can manipulated at all by any single
player. While it is easy to see that the bound on

∑
i Mi(f)

cannot be improved to being more than a constant, the
first open problem we leave is whether the bound on
maxi Mi(f) can be improved further. We also do not
know how to replace the neutrality condition with the
weaker “correct” condition: being far from having a range
of size at most 2. We leave this as the second open prob-
lem.

Our third open problem concerns the case of more than
three alternatives, m > 3. While some parts of our proof
extend to this case, (and indeed we took the care to state
them in the general form), we were not able to extend
all required parts of the proof. We do conjecture that the
theorem does generalize to m > 3, perhaps with the exact
form of the bound decreasing polynomially in m. This is
our third open problem.

This would have implications regarding a recent line
of research attempting to find social choice functions that
are computationally hard to manipulate on the average.
It is known that for several social choice functions, ma-
nipulation, as an algorithmic problem, is NP-complete
[BTT89, BO91]. Several authors asked whether this com-

putational hardness can also be extended to the average
case – a computational version of our question – and some
“computational hardness augmentation” techniques have
been given [CS03, EL05]. Some results for restricted
classes of social choice functions have been obtained pre-
viously [PR06],[CS06], but no general results. Our con-
jecture implies that even a random attempted manipu-
lation has non-negligible probability of being profitable,
and thus that the computational hardness of manipulation
in the average case is trivial.

A word is in order regarding our techniques. Our start-
ing point is the recent work of [Ka02] that obtained quan-
titative versions of Arrow’s theorem [Arr51] using meth-
ods that involve the Fourier transform on the boolean hy-
percube. Our proof then has two further components.
First, a “quantitative-preserving” reduction from Arrow’s
theorem to a variant of the Gibbard-Satherwaite theorem
that allows multi-voter manipulation, and then a directed
isoperimetric inequality that allows us to move to single-
voter manipulation. Our proof of the isoperimetric in-
equality relies on the FKG correlation inequality [FKG71]
(or, more precisely, on Harris’ inequality, [Ha60]).

2 Preliminaries and Notation

2.1 Preferences
Let [m] denote a finite set of m alternatives, m ≥ 3. De-
note by L the set of total orders on [m]. We view L as
a subset of the space {0, 1}(m

2 ), in which each bit de-
notes the “preference” between two alternatives, where
in L these must be transitive, but in {0, 1}(m

2 ) not nec-
essarily so. We will denote the input from society by
a matrix x where we also view x as a column vector
(x1, . . . , xn) ∈ Ln, where each coordinate xi is a row
vector of the form xi ∈ {0, 1}(m

2 ), where for a, b ∈ [m],
xa,b

i = 1 denotes that voter i prefers candidate a to can-
didate b. We will also denote the (a, b)’th column of x by
xa,b = (xa,b

1 , . . . , xa,b
n ).

Given any two functions f, g from a probability space
X to a set Y we denote the distance between f and g as

∆(f, g) = Pr
x∈X

[f(x) 6= g(x)].

If G is a family of such functions we define ∆(f, G) =
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ming∈G ∆(f, g). In our setting X will always be endowed
with the uniform probability, so the distance between two
functions is nothing else than the proportion of inputs on
which the functions disagree.

2.2 Social Choice Functions

A social choice function (henceforth SCF) is a function
f : Ln → [m]. SCFs are also called voting methods.

A SCF is called neutral if it does not depend on the
“names” of elements of [m]. Formally, if it commutes
with the action of all permutations on [m].

2.3 Social Welfare Functions

A generalized SWF (GSWF) is a function F : Ln →
{0, 1}(m

2 ). For every a, b ∈ A we denote by F a,b the
(a, b)’th bit output by F . For convenience we sometimes
abuse notation and write the output of F a,b as a or b rather
than 1 or 0. A social welfare function (SWF) is a function
F : Ln → L, i.e. where F (x) is a full (linear) order for
all x.

F is said to have a Generalized Condorcet Winner on x
if for some a we have that for all b, F a,b(x) = 1. We de-
note by CW the set of all GSWFs that have a Generalized
Condorcet Winner for all x. Note that SWF ⊆ CW .

A GSWF is called neutral if it does not depend on the
“names” of elements of [m]. Formally, if it commutes
with all permutations on [m].

A GSWF is said to satisfy independence of irrelevant
alternatives (IIA) if the social ranking of any two alterna-
tives depends only on the rankings of all participants be-
tween these two alternatives. Formally, if F a,b is in fact a
function just of xa,b rather than of all coordinates of x, as
allowed by the general definition.

Note that if F is a GSWF which is both neutral and
IIA then it is determined by a single Boolean function f :
{0, 1}n → {0, 1}, in the sense that F a,b(xa,b) = f(xa,b)
for all a, b ∈ [m]. The neutrality also implies that in this
case f is an odd function: f(x̄) = 1 − f(x), where x̄i =
1− xi. In this case we will write F = f⊗(m

2 ).

2.4 Dictatorships
As usual in Arrow-type theorems we will be concerned
with functions f(x), where x is a vector and f depends
only on a single coordinate xi.

The i-dictatorship SCF is given by dicti(x) being the
top element in xi. The i-anti-dictatorship SCF is given by
dicti(x) being the bottom element in xi. We denote the
set of dictatorships and anti-dictatorships by DICT .

The i-dictatorship SWF is given by Dicti(x) = xi,
here, of course, xi is an order. The i-anti-dictatorship is
given by Dicti(x) = xi, where xi is the reverse of xi.
We denote the set of dictatorships and anti-dictatorships
by DICT , as we did with SCFs. (It will always be clear
from the context whether we mean a SCF or a SWF).

Finally we will also use DICT to denote the set of
Boolean functions f : {0, 1}n → {0, 1} that depend on a
single coordinate, i.e f(x) = xi or f(x) = 1− xi.

3 Overview of the proof
We recall our definition of manipulation power and our
main theorem.

Definition 2. The manipulation power of voter i on a so-
cial choice function f denoted Mi(f), is the probability
that x′i is a profitable manipulation of f by voter i at pro-
file x1...xn, where x1...xn and x′i are chosen uniformly at
random in Ln.

Theorem 1. There exists a constant C > 0 such that
for every ε > 0 the following holds. If f is a neutral
SCF for n voters over 3 alternatives and ∆(f, g) > ε
for any dictatorship g, then f has total manipulability:∑n

i=1 Mi(f) ≥ Cε2.

This theorem is proved in three steps. The first two
apply also for m > 3 are are stated for general m.

3.1 Step 1
The first step is based on the work of [Ka02] and concerns
Social Welfare Functions:

Lemma 1. For every fixed m and ε > 0 there exists
δ > 0 such that if F = f⊗(m

2 ) is a neutral IIA GSWF
over m alternatives with f : {0, 1}n → {0, 1}, and
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∆(f, DICT ) > ε, then F has probability of at least
δ of not having a Generalized Condorcet Winner. For
m = 3, 4, 5, δ = Cε, where C > 0 is an absolute con-
stant.

The case m = 3, which is all that is needed for our
main theorem, was proved by [Ka02]. Our proof for gen-
eral values of m gives δ that decrease as εO(m). However,
we conjecture that for fixed ε > 0 not only that δ need
not decrease with m, it actually tends to 1. This is sup-
ported by recent work of Mossel [Mo07] who calculated
the asymptotic value limm limn[1 − δ(m)] = Θ(1/m))
for the case when F a,b : {0, 1}n → {0, 1} is the majority
function on xa,b for all a, b ∈ [m].

Also, since our starting point is assuming that F is
not close to a dictatorship, it is worthwhile noting that
in principle, when ε is sufficiently small, ∆(f, DICT ) =
θ(m∆(F,DICT )).

3.2 Step 2
The second step is a reduction from social welfare func-
tions to social choice functions, with a different notion of
manipulation: by many voters.

Definition 3. Let f be a SCF and let a, b be two alterna-
tives. Denote

Ma,b(f) = Pr[f(x) = a, f(x′) = b],

where x, x′ are chosen at random in Ln with xa,b =
(x′)a,b.

I.e. this definition captures the scenario where all play-
ers together attempt to manipulate f to be b rather than
a by re-choosing at random all their preferences – except
those between a and b. This definition does not require
that anyone in particular gain from this, just that some-
thing “unexpected” happens.

Our reduction works as follows. Given a SCF f with
low Ma,b(f) for all a, b, we construct a neutral GSWF F
(satisfying the IIA property,) that is close to always hav-
ing a Generalized Condorcet Winner, hence, by Lemma
1, close to DICT . Our construction will be such that this
will imply that f too is close to DICT , hence:

Lemma 2. For every fixed m there exists δ > 0 such that
for all ε > 0 the following holds. Let f be a neutral SCF

among m alternatives such that ∆(f,DICT ) > ε. Then
for all (a, b) we have Ma,b(f) ≥ δ. For m = 3, δ = Cε2,
where C > 0 is an absolute constant.

3.3 Step 3
The third step shows that, for m = 3, the probability of
this type of multi-voter manipulation yields a lower bound
on the probability of single-voter manipulation:

Lemma 3. For every SCF f on 3 alternatives and every
a, b ∈ A, Ma,b(f) ≤ 6

∑
i Mi(f).

The combination of this lemma with lemma 2 immedi-
ately implies the main theorem. We do not know how to
generalize this lemma to m > 3.

4 Proof of Step 1
The case m = 3 of Lemma 1 is shown in [Ka02]:

Theorem 2. ([Ka02], Theorem 7.2) For every bal-
anced IIA GSWF F and every ε > 0 we have that
∆(F,DICT ) ≥ ε implies ∆(F, SWF ) ≥ Cε, where
C > 0 is an absolute constant.

Balanced here means that for all a, b ∈ A ,
Pr[F a,b(xa,b) = a] = 1/2, where xa,b is chosen uni-
formly in {0, 1}n. This condition is certainly true for
neutral functions since for those Pr[F a,b(xa,b) = a] =
Pr[F a,b(xa,b) = b].

This theorem implies lemma 1 for the case m = 3 since
in this case having a Generalized Condorcet Winner in
F (x) is equivalent to being a full order, F (x) ∈ L, i.e.
for m = 3, SWF = CW .

For m > 3, having a Generalized Condorcet Winner
is a weaker requirement than being a full order, and thus
Kalai’s theorem does not directly imply lemma 1. The
cases of m = 4, 5 are proved in appendix 1. At this point
we can prove the lemma for all values of m using full in-
duction. Once we have lemma 1 for values m1 and m2

then we can also deduce it for m = m1 + m2. Let
F = f⊗(m

2 ), and f be ε-far from dictatorship. Using the
lemma on m1,m2 we get that with probability at least δm1

there is no Generalized Condorect Winner among the first
m1 alternatives and with probability at least δm2 there is
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no Generalized Condorcet Winner among the last m2 al-
ternatives. The key point here is that these two events are
independent since the voter preferences within two dis-
joint sets of alternatives are totally independent of each
other. Thus the probability that there is no Generalized
Condorect Winner at all is at least δm1 · δm2 . Staring with
δ = Cε for m = 3, 4, 5 we get δ ≥ (Cε)bm/3c for gen-
eral m. (Luckily, every integer m > 5 is of the form
m = 3x + 4y, with x and y nonnegative integers.)

5 Proof of Step 2
We will use any function f with low Ma,b for all a, b ∈
[m] to construct a neutral IIA GSWF F that is close to
always having a Generalized Condorcet Winner.

Definition 4. For every a, b ∈ [m] let us define F a,b(xa,b)
to be a if

Pr
x′

[f(x′) = a | x′a,b = xa,b] > Pr
x′

[f(x′) = b | x′a,b = xa,b]

and to be b if the reverse inequality holds. (Here, for sake
of clarity we write the output of F a,b as a or b rather than
0 or 1.) In the case of equality we break the tie defining
F a,b(xa,b) to be the majority vote over the n values xa,b

i .
(And if n is even we add a further tie breaking rule, e.g.
in case of a tie take the majority of all voters but the first.)

This defines an IIA GSWF F .

It will be convenient to analyze F using a measure that
is closely related to Ma,b:

Definition 5. We will say that x is a minority preference
on (a, b) if f(x) = a and F a,b(x) = b or if f(x) = b and
F a,b(x) = a.

We say that x is a minority preference if it is a minor-
ity preference for at least some pair (a, b). Denote by
Na,b(f) = Prx[x is a minority preference on (a, b)].

It is easy to relate Na,b to Ma,b, using the Cauchy-
Schwarz inequality:

Lemma 4. For every SCF f and every a, b we have that
Ma,b(f) ≥ (Na,b(f))2.

Proof. Fix f and a, b. Define pa(xa,b) = Pr[f(x) = a]
and pb(xa,b) = Pr[f(x) = b] where the probabilities are

taken over a random x ∈ L whose (a, b)’th column agrees
with the given one xa,b. In these terms

Ma,b(f) = Exa,b [pa(xa,b)pb(xa,b)]

while

Na,b(f) = Exa,b [min{pa(xa,b), pb(xa,b)}].
So we can bound

Ma,b(f) = E[pa · pb] ≥
E[(min{pa, pb})2]

≥ (E[min{pa, pb}])2 = (Na,b(f))2,

where the second inequality is Cauchy-Schwarz.

We are now ready to prove the properties of the con-
structed F .

Lemma 5. 1. ∆(F, CW ) ≤ ∑
a,b∈[m] N

a,b(f).

2. ∆(F, DICT ) ≥ ∆(f, DICT )−∑
a,b∈[m] N

a,b(f).

3. If f is neutral then so is F .

Proof. Fix x that is not a minority preference and denote
a = f(x). Note that by definition for all b we must have
that F a,b(x) = a and thus a is a Generalized Condorcet
Winner in F (x).

Item 1 follows since we get immediately that the dis-
tance from CW is bounded from above by the probability
that x is a minority preference.

For item 2, for those x with F (x) = Dicti(x) we get
that xa,b

i = 1 and thus a is the top choice of xi and thus
f(x) = dicti(x). (Similarly for anti-dictatorship.)

Item 3 is trivial by definition.

From this lemma it follows that a SCF f that is far
from dictatorship and has low multi-voter manipulation
Ma,b(f) yields an IIA SWF that is far from dictatorship
and close to always having a Generalized Condorcet Win-
ner.

We should note that a certain converse is true as well.
If we have an IIA GSWF F with ∆(F,CW ) ≤ ε then we
can define f(x) to be the Generalized Condorcet Winner
of F (x) (and some other candidate if a Generalized Con-
dorcet Winner does not exist – this rule can be made to re-
tain neutrality). Note that due to F beeing IIA, f(x) = a
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and f(x′) = b with xa,b = x′a,b can happen only if either
F (x) or F (x′) does not have a Generalized Condorcet
Winner, thus Ma,b(f) ≤ 2ε.

6 Proof of Step 3

In this section we study the combinatorial structures un-
derlying Ma,b(f) and

∑
i Mi(f) and relating them.

For the rest of this section let us fix the set of alterna-
tives [m] = {a, b, c} and fix a SCF f .

Definition 6. For every value of za,b denote A(za,b) =
{x|xa,b = za,b, f(x) = a} and B(za,b) = {x|xa,b =
za,b, f(x) = b}.

Note that for every possible value of za,b there are ex-
actly 3n possible values of x that agree with it: in x
the preferences of all voters between a and b are given
and each voter may choose one of three locations for
c: above both a and b, below both of them, or be-
tween them. Thus, for every fixed za,b it will be use-
full to view the set {x|xa,b = za,b}n as isomorphic
to {0, 1, 2}n = {above, between, below}n and to view
A(za,b) and B(za,b) as residing in this space. We will
use v = (v1...vn) to denote a point in this space. Thus
once xa,b

i is fixed, vi ∈ {0, 1, 2} encodes both xb,c
i and

xc,a
i . E.g. xa,b

i = 0 and vi = 0 encodes the preference
c Âi b Âi a.

In these terms we can directly express Ma,b(f):

Lemma 6.

Ma,b(f) = Ex

[ |A(xa,b)|
3n

· |B(xa,b)|
3n

]
.

Proof. This is just a re-wording of the definition of
Ma,b(f).

In order to relate Mi(f) to these sets we need to add di-
rected edges to {0, 1, 2}n that capture (some of) the prof-
itable manipulations by player i. For each fixed value of
xa,b, for each player i and each v−i we will have 3 di-
rected edges going in direction i between the possible val-
ues of vi: 0 → 1, 1 → 2, and 0 → 2. We will count the
directed edges going “upward” from A and from B.

Definition 7. For a subset A ⊆ {0, 1, 2}n, its upper
edge border, ∂A is the set of directed edges defined above
whose tail is in A and whose head is not in A. Formally,

∂iA = {(v−i, vi, v
′
i) | (v−i, vi) ∈ A, (v−i, v

′
i) 6∈ A, vi < v′i}

and ∂A =
⋃

i ∂i(A).

We now relate Mi(f) to the upper edge border in direc-
tion i.

Lemma 7. Mi(f) ≥
1
63−nEx

[|∂iA(xa,b)|+ |∂iB(xa,b)|].

Proof. Let us choose x and x′ at random, differing only
(possibly) in that xi may be different from x′i and provide
a lower bound on the probability that the ith coordinate
of one is a profitable manipulation of the other. We per-
form this random choice as follows: first xa,b

−i ∈ {0, 1}n,
xa,b

i ∈ {0, 1} and x′a,b
i ∈ {0, 1} are chosen at random.

With probability of exactly 1/2, we have that x′a,b
i = xa,b

i

and the rest of the analysis will be conditioned on this in-
deed happening (a conditioning that does not affect the
distribution chosen). We next choose v−i ∈ {0, 1, 2}n−1

and finally vi ∈ {0, 1, 2} and v′i ∈ {0, 1, 2} are chosen at
random. Note that if (v−i, vi, v

′
i) ∈ ∂iA then either x′i is a

manipulation of x or xi is a manipulation of x′. This is be-
cause when moving from xi to x′i voter i lowered his rel-
ative preference of c without changing his ranking of the
pair (a, b), with f(x) changing from a to some other result
t ∈ {b, c}. If, according to xi, voter i prefers t to a then x′i
is a manipulation. If, in the other case, xi ranks a above t
then this is definitely true for x′i too, since when moving
from xi to x′i a’s rank relative to b did not change, whereas
it improved relative to c. Hence, in the second case xi is a
manipulation of x′. Thus every edge in ∂iA corresponds
to a pair x, x′ that is chosen with probability 1

2 · 3−n · 1
3 ,

which contributes in total 1
63−nEx[|∂iA(xa,b)|. A similar

contribution comes from the case (v−i, vi, v
′
i) ∈ ∂iB.

Summing over i we get

Corollary 1.

3−n

6
Ex

[(|∂A(xa,b)|+ |∂B(xa,b)|)] ≤
∑

i

Mi(f)).

6



This corollary, the fact that

E

[ |A(xa,b)|
3n

· |A(xa,b)|
3n

]
= Ma,b(f),

and the following lemma, when applied to A(xa,b) and
B(xa,b) will finally yield Lemma 3, completing the proof
of step three.

Lemma 8. For every disjoint A,B ⊂ {0, 1, 2}n we have
that |∂(A)|+ |∂(B)| ≥ 3−n|A||B|.
Proof. Let us start by “shifting” both A and B upward.
I.e. for each i = 1, . . . , n, at stage i we replace A by a set
of the same size that is monotone in the i’th coordinate
by moving every v with vi < 2 to have vi = 2 if this is
not already in A, and then moving every v that remained
with vi = 0 to have vi = 1 if this is not already in A.
Thus the i’th stage leaves A to be “monotone in the i’th
coordinate”, i.e. if v ∈ A and v′i ≥ vi then (v−iv

′
i) ∈ A.

Clearly such a stage does not change the size of A. As
usual in such operations, it is not hard to check that this
operation does not increase ∂jA for any j, and does not
destroy the monotonicity in previous indices.

Let A′ and B′ be the sets we obtained after all n stages.
Since every edge in ∂A corresponds at most to one vertex
shifted from A to A′, and the same holds for B we have

|A′ \A| ≤ |∂(A)|, |B′ \B| ≤ |∂(B)|.
Since both A′ and B′ are monotone in the partial order of
the lattice {0, 1, 2}n they are ”positively correlated”, by
Harris’ theorem [Ha60], or by the better known general-
ization, the FKG inequality [FKG71]. This means that

|A′ ∩B′|/3n ≥ |A′|/3n · |B′|/3n = |A|/3n · |B|/3n.

However A and B were disjoint so A′ ∩B′ ⊆ (A′ \A)∪
(B′ \B), which completes the proof.
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A Social Welfare Functions with
m = 4, 5

In this appendix we will deduce the generalization of
Kalai’s theorem for m = 4, 5 from the case m = 3. Un-
fortunately, so far we have had no success in pushing these
methods further.

Our starting point is the following version of Theorem
2 (which follows easily from the original version).

Theorem 3. There exists a constant δ3 > 0 such that the
following holds. Let F be a neutral IIA GSWF, with n
voters and 3 alternatives, determined by a function f :
{0, 1}n → {0, 1}. Let C3(F ) be the probability over X
that F (X) has a Generalized Condorcet Winner. Then

C3(F ) ≤ 1− δ3 ·∆(f, DICT ).

What we prove is the same for m = 4, 5:

Theorem 4. For m = 4, 5, there exists a constant δm > 0
such that the following holds. Let F be a neutral IIA
GSWF, with n voters and m alternatives, determined by a
function f : {0, 1}n → {0, 1}. Let Cm(F ) be the prob-
ability over X that F (X) has a Generalized Condorcet
Winner. Then

Cm(F ) ≤ 1− δm ·∆(f, DICT ).

We begin by considering the case m = 4. Let there be
four candidates {1, 2, 3, 4}. Let Xij be the random 0/1
variable that indicates the event that i beats j according
to F (X) where X is chosen at random. Note that, from
neutrality, the probability of F (X) having a Generalized

Condorcet Winner is precisely four times the probabil-
ity that candidate 1 is a Generalized Condorcet Winner.
Hence

C4(F ) = 4 · E[
4∏

j=2

X1j ] = 4 · E[
4∏

j=2

(1−Xj1)]. (1)

Before expanding this, note the following. From neu-
trality of F it follows that f is balanced, hence for i ∈
{2, 3, 4}

E[Xi1] = 1/2.

Next, for any i, j ∈ {2, 3, 4}, we use the theorem for m =
3 on the set {1, i, j} to get

E[Xj1Xi1] =
C3(F )

3
≤ 1

3
(1− δ3∆(f, DICT )).

Finally, from neutrality, the probability of candidate 1 be-
ing a Generalized Condorcet Winner is precisely equal
to the probability of him being a Generalized Condorcet
Loser, i.e.

E[
4∏

j=2

X1j ] = E[
4∏

j=2

Xj1]

Now, using these observations we expand (1) to get

C4(F ) = 4(1− 3 · 1
2

+ 3
C3(F )

3
− C4

4
),

or
C4(F ) = 2C3(F )− 1, (2)

which implies

C4(F ) ≤ 1− 2δ3∆(f,DICT ),

and yields the theorem for m = 4 with δ4 = 2δ3.
Next we consider the case of m = 5. Unfortunately,

the first natural step, generalizing the inclusion-exclusion
type formula (1) to get

C5(F ) = 5 · E[
5∏

j=2

(1−Xj1)]

does not help, due to an annoying prosaic reason: the two
terms E[

∏5
j=2(X1j)] and E[

∏5
j=2(1 − Xj1)] which ap-

pear on the two sides of the equation have the same sign,
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and cancel out. To remedy this we consider the case of
m = 6. We begin with

C6(F ) = 6 · E[
6∏

j=2

(1−Xj1)].

This gives

C6(F ) = 6(1− 5
2

+
(

5
2

)
C3(F )

3
−

−
(

5
3

)
C4(F )

4
+

(
5
4

)
C5(F )

5
− C6(F )

6
).

Rearranging, and using (2) we get,

C6(F )
3

+
5C3(F )

3
− 1 = C5(F ).

Since 1 ≥ C6(F ), and (1 − δ3∆(f, DICT )) ≥ C3(F )
This yields

1− 5
3
δ3∆(f, DICT ) ≥ C5(F ),

i.e. the theorem for m = 5 with δ5 = 5
3δ3.
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