
Solving Analytic Differential Equations in
Polynomial Time over Unbounded Domains

Olivier Bournez1, Daniel S. Graça2,3, and Amaury Pouly4

1 Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France.
Olivier.Bournez@lix.polytechnique.fr

2 CEDMES/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal.
dgraca@ualg.pt

3 SQIG /Instituto de Telecomunicações, Lisbon, Portugal.
4 Ecole Normale Supérieure de Lyon, France. Amaury.Pouly@ens-lyon.fr

Abstract. In this paper we consider the computational complexity of
solving initial-value problems defined with analytic ordinary differential
equations (ODEs) over unbounded domains of Rn and Cn, under the
Computable Analysis setting. We show that the solution can be com-
puted in polynomial time over its maximal interval of definition, provided
it satisfies a very generous bound on its growth, and that the function
admits an analytic extension to the complex plane.

1 Introduction

We consider the following initial-value problem defined by an ODE{
ẋ(t) = f(x(t))
x(0) = x0

(1)

where f is defined on some (possibly unbounded) domain.
In this paper we show that if f : Rn → Rn admits an analytic extension

to Cn and x : R → Rn admits an analytic extension to C and both satisfy
a very generous assumption concerning their growth, the solution of (1) can be
computed in polynomial time from f and x0 over R. The notion of computability
we use is that of Ko [1]. Actually, our constructions also work when considering
solutions over C and assuming f : Cn → Cn analytic. Notice that, as it is well
known, Equation (1) covers the case of an ODE of type ẋ = f(t, x), as this latter
case can be reduced to (1) by using a new variable xn+1 satisfying x′n+1 = 1.

Motivation 1 & Digression: Analog models of computation. We obtained our re-
sults by trying to understand whether analog continuous-time models of compu-
tation do satisfy (some variant) of the Church-Turing thesis: since such systems
can usually be described by particular classes of ordinary differential equations
(ODEs), understanding whether these models can compute more than Turing
machines is equivalent to understanding whether ODEs can always be simulated
by Turing machines.

For example, the most well known example of analog model of computation is
the General Purpose Analog Computer (GPAC) introduced by Claude Shannon
in [2] as the idealization of an analog computer, the Differential Analyzer [3].
Shannon worked as an operator early in his career on these machines.

As it can be proved [2, 4] that any GPAC can be described by an ordinary
differential equation of the form of (1) with f componentwise polynomial, prov-
ing that the GPAC does satisfy the Church-Turing thesis is equivalent to proving
that solutions of such an ODE are always computable. It has been proved only
recently that this holds [5], [6]. Hence, the GPAC does satisfy the Church-Turing
thesis. Notice that computability of solutions doesn’t hold for general f [7], since
uncomputability results can be obtained when the system is “ill behaved” (e.g.
non-unique solutions in [7]). These kind of phenomena does not appear in models
physically inspired by real machines like the GPAC.

Here, we are dealing with the next step. Do analog models like the GPAC
satisfy the effective (in the sense of computable complexity) version of Church
Turing thesis: all (sufficiently powerful) “reasonable” models of computation with
“reasonable” measure of time are polynomially equivalent. In other words, we
want to understand whether analog systems can provably (not) compute faster
than usual classical digital models like Turing machines.

Taking time variable t as a measure of time (which is the most natural mea-
sure), to prove that the GPAC cannot compute more than Turing machines
would require to prove that solutions of ODE (1) are always computable (in the
classical sense) in a time polynomial in t, for f (componentwise) polynomial.

We here don’t get exactly this result: for f componentwise polynomial, corre-
sponding to GPACs, y is clearly analytic. We have to suppose furthermore that
y admits an analytic extension to C. Although this case is stronger than when
y is real analytic (it is well known that analyticity on the complex plane implies
analyticity over the real line, but that the converse direction does not hold), we
believe that our results are interesting on their own and provide a promising
step towards the case of the real line.

Motivation 2: Recursive analysis The results obtained in this paper turn out
to be new and not known in a recursive analysis or classical computability or
complexity perspective: see related work section.

Being able to compute efficiently solutions of general ordinary differential
equations is clearly of interest. Observe that all usual methods for numerical
integrations (including Euler’s method, Runge Kutta’s methods, . . .) do not
provide the value of x(t) in a time polynomial in t, whereas our algorithm does for
analytic functions which satisfy our hypothesis. Actually, as all these numerical
methods falls in the general theory of n-order methods for some n, it is possible
to use this theory (developed for example in [8]) to prove that none of them
produces the value of x(t) in a time polynomial in t. This has already been
observed in [9] which claims to overcome this limitation for some classes of
functions by using methods of order n with n depending on t, but without a full
proof. We do not use this idea but prove that it is indeed possible to produce
x(t) in a time polynomial in t.

2 Related work and discussions

Typically the ODE (1) is considered over a subset of Rn. It is well-known in
mathematics that its solution exists whenever f is continuous (Peano’s existence
theorem), and is unique whenever f is Lipschitz (Picard or Cauchy-Lipschitz’s
theorem).

Considering computability, it is well-known that solutions of (1) are com-
putable (in the sense of computable analysis) provided f is Lipschitz. To prove
this result one can basically implement an algorithm which simulates Picard’s
classical method of successive approximations used in the proof of the funda-
mental existence-uniqueness theorem for (1), which assumes the existence of a
Lipschitz condition (see e.g. [10]).

However, assuming f to be Lipschitz often restricts in practice f to be C1

and defined on a bounded domain, or to have, at most, linear growth on an
unbounded domain, which is not really a very satisfactory result.

To avoid the limitations pointed out above, in [5] the authors introduced
the idea of effectively locally Lipschitz functions (functions which are locally
Lipschitz and for which the local Lipschitz constants can be computed) and
showed that if f is effectively Lipschitz, then the solution of (1) is computable
over the maximal interval in which the solution is defined. Another related result
can be found in [11] where the author proves computability of solutions of (1) in
unbounded domains without requiring the use of Lipschitz constants. However
Ruohonen requires a very restrictive bound on the growth of f .

In general, if f is continuous, Peano’s existence theorem guarantees that
at least a solution exists for (1). The problem is that the condition that f is
continuous does not guarantee a unique solution. In [6] the authors show that
the solution of (1) is computable in its maximal interval of definition if f is
continuous and the solution of (1) is unique.

But what about computational complexity? The procedure presented in [6]
relies on an exhaustive search and, as the authors mention (p. 11): “Of course,
the resulting algorithms are highly inefficient in practice”.

In the book [1] several interesting results are proved. For instance it is shown
(Theorem 7.3) that there are (continuous) polynomial-time computable func-
tions f such that (1) has a unique solution, but which can have arbitrarily high
complexity. However this result follows because we do not require that f satisfies
a Lipschitz condition. If f satisfies a Lipschitz condition and is polynomial-time
computable, then an analysis of Euler’s algorithm shows that, on a bounded do-
main, the solution for (1) is computable in polynomial space. It is also shown that
if f satisfies a weak form of the Lipschitz condition and is polynomial-time com-
putable, the solution to (1) is polynomial-time computable iff P = PSPACE
(again on a bounded domain). In [12] this result is extended and the author
shows that initial-value problems given by a polynomial-time computable, Lip-
schitz continuous function can have a polynomial-space complete solution.

So it seems that the solution to (1) cannot be computed in polynomial time
for Lipschitz functions in general. But what if we require more conditions on f?
In particular, if we require f to be analytic, what is the computational complexity

of the solution? Will it be polynomial-time? This question cannot be answered
by analyzing classical methods for solving ODEs (e.g. Euler’s algorithm), since
they do not use the assumption of analyticity. Instead, other techniques which
explicitly use this assumption must be used.

Restricting to analytic functions is natural as this is indeed a natural class
of functions, and as it is sometimes observed that functions coming from our
physical world, are mostly analytic functions.

In [13], [14] the authors show that, locally, the solution is polynomial-time
computable if f is (complex) analytic. However, Müller’s construction relies on
the highly non-constructive Heine-Borel theorem. This makes this results less
convincing because although it guarantees the solution can be computed in
polynomial-time, it gives no algorithm to compute it. Also it gives no insight
on what happens on a broader domain, e.g. Cn.

In this paper we study computability of (1) when f is analytic. Instead of
taking analytic functions f defined over Rn, our results will be for analytic
functions with extensions to Cn (also known as holomorphic functions). The
reasons of taking Cn and not Rn are twofold.

First, Cn is a broader domain than Rn and it is natural to generalize the
results there. When the time variable is defined in the real line, existence and
uniqueness results for ODEs defined over Rn are translated in the same way for
ODEs on Cn [15], [16], as well as the results we prove here.

Second, some of our results rely on the use of the Cauchy integral formula,
which assumes analytic functions over Cn which is a stricter condition than being
real analytic (holomorphic functions, when restricted to Rn, always originate
analytic functions, but analytic functions over Rn may not have an holomorphic
extension defined on the whole complex set Cn). Therefore our results, in the
case of Rn, are not enough to capture the full class of analytic functions (over Rn)
but are still strong enough to capture ODEs defined with most of the “usual”
functions: ex, sin, cos, polynomials, etc. It would be interesting to know if these
results can be fully extended to analytic functions defined over Rn, but we have
not yet obtained any result on this topic. Rather, we see the complex case as a
preliminary approach for getting closer to the real case. Indeed, knowing that
f is complex analytic is a stronger condition than only knowing that f is real
analytic, which gives us more tools to work with, namely the Cauchy integral
formula.

Organization of the paper The organization of the paper is as follows. Section 3
presents background material about Computable Analysis, which will be needed
in Section 4 to state the main result. We then proceed in the following sections
with its proof.

3 Computable Analysis

Computable Analysis is an extension of the classical theory of computation to
sets other than N due to Turing [17], Grzegorczyk [18], and Lacombe [19]. Sev-
eral equivalent approaches can be used (proof of equivalence can be found [20])

for considering computability over Rn: using Type-2 machines [20], using ora-
cle Turing machines [1], or using modulus of continuity [21], [1], among other
approaches.

In this paper we will use the approach of Ko in [1], based on oracle Turing
machines. The idea underlying [1] to compute over Rn is to encode each element
x ∈ Rn as a Cauchy sequence of “simple rationals” with a known “simple” rate
of convergence. In [1] Ko uses sequences of dyadic rational numbers, i.e. rationals
of the type m

2n for some m ∈ Z and n ∈ N. Then a sequence of dyadic rational
numbers {dn/2n}n∈N represents a real number x if |x − dn/2n| ≤ 2−n for all

n ∈ N. It is easy to represent points of Rk using dyadic sequences (use k sequences
of dyadic rationals, each coding a component of x). Since C ' R2, this approach
can be used to compute with elements of C. Note that what defines a sequence
of dyadic rational numbers {dn/2n}n∈N is the sequence {dn}N, which is nothing
more than a function f : N→ N defined by f(n) = dn. Therefore one can define
the notion of computable point of R: it is a point which can be coded by a
sequence {dn/2n}N such that the function f : N → N defined by f(n) = dn is
computable. By other words, a computable point is a point for which we can
compute an arbitrary rational approximation in finite time. Similarly one can
define computable points of Rk and Ck. Ko also deals with complexity: a point
x is polynomial-time computable if one can compute a dyadic rational which
approaches x with precision ≤ 2−n in time polynomial in n.

Having worked with computability of points of Rn and Cn, one can also define
computability of functions f : Rk → Rj and g : Ck → Cj . In essence, a function
f is computable if there is some oracle Turing machine that, using as oracles
functions which encode the argument x of f and as input a number n ∈ N,
it can compute in finite time a rational approaching f(x) with precision 2−n.
Similarly, if this rational approximation can be computed in time polynomial in
n, we say that f is polynomial-time computable. Precise details of this discussion
can be found in [1].

4 Main result

Let f : Cd → Cd be an analytic function on Cd and t ∈ R, x0 ∈ Cd. We are
interested in computing the solution of the initial-value problem{

ẋ(t) = f(x(t))
x(t0) = x0.

(2)

It is well-known that if f is analytic then (2) has a unique solution which is
analytic on its maximum life interval. We are interested in obtaining sufficient
conditions that guarantee x(t) to be polynomial-time computable.

4.1 Necessary condition: poly-boundedness

We first observe an easy necessary condition: if x(t) is polynomial-time com-
putable, then x(t) cannot grow too fast, as a Turing machine cannot write more
than t symbols in time t. Formally, we introduce the following concept.

Definition 1 (Poly-bounded function). A function f : Cd → Cd′ is poly-
bounded (or p-poly-bounded) iff there is a polynomial p such that

∀x ∈ Cd \ {0}, ‖f(x)‖ 6 2p(log2d‖x‖e). (3)

Without loss of generality, we can assume that p is an increasing function on
R+

0 (replace each coefficient in polynomial p by its absolute value if needed). We
then get the following theorem:

Theorem 1. If f : Cd → Cd′ is polynomial-time computable, then f is poly-
bounded.

4.2 Sufficient condition: our main result

Our main result can be formulated as follows:

Theorem 2 (Main result). Let x(t) be the solution of the initial-value problem
(2). Assume that

– f is analytic and polynomial-time computable on Cd;
– x0 is a polynomial-time computable vector of complex numbers
– t0 is a polynomial-time computable real number
– function x(t) admits an analytic extension to C and is poly-bounded over C

then the function x(t) is polynomial-time computable.

Actually, we can even say more – the transformation is effective, if one adds
the hypothesis that f is also poly-bounded.

Theorem 3 (Main result: Effective version). Fix a polynomial p. Keep the
same hypothesis of Theorem 2, but in addition, restrict to functions f that are
p-poly-bounded.

Then the transformation is effective and even polynomial-time computable:
the functional that maps f , x0, t0, and t to function x(t) is polynomial-time
computable.

Remark 1. From Theorem 1, even if f is not assumed poly-bounded, we know
it is p-poly-bounded for some p, as it is assumed polynomial-time computable.
However, the problem is that we cannot compute in general such polynomial p
from f , and hence we have to restrict Theorem 3 to functions f with given p.

The whole idea behind the proof of above theorem is to compute the solu-
tion of (2) in polynomial time in some fixed neighborhood of x0, using Picard’s
classical method of successive approximations. From this solution we can com-
pute the coefficients of its Taylor series expansion, which allow us to compute
the solution on its maximal interval of definition using the hypothesis of poly-
boundedness. All the construction can be done in polynomial time. A sketch of
proof is presented in the following two sections.

4.3 Extension

Theorem 2 requires a strong condition on the solution: it needs to be analytic
over C. This can be too much of a requirement since even a simple function like

1
1+x2 doesn’t satisfy our hypothesis. However at the expense of a small trick one
can extend this result to functions having a finite number of poles over C.

Theorem 4. Keep the same hypothesis as in Theorem 2 except that x is assumed
analytic over U = Cd\{a1, . . . , an} where a1, . . . , an are poles of order k1, . . . , kn
of x. Assume that y(z) = x(z)

∏n
i=1(z−ai)ki is poly-bounded and that the ai are

polynomial-time computable. Then x is polynomial-time computable over U .

Proof (Sketch). The idea is that if x has a pole of order k on a then (z−a)kx(z)
has a removable singularity. By repeating this trick for every pole, one can build a
new function which is analytic over C. Furthermore this function is still a solution
of a IVP. To compute the initial function from the new one, it is sufficient to
divide by a polynomial, which doesn’t change the complexity.

5 On analytic functions

We first need to state some basic facts about analytic functions in order to be
convinced that the complexity of computing an analytic function is the same
as the complexity of computing the coefficients of its Taylor series. This is the
purpose of the current section.

5.1 From the function to the Taylor series

The following theorem is known.

Theorem 5 ([22], [23]). If f is complex analytic and polynomial-time com-
putable on a neighborhood of x0, where x0 is a polynomial-time computable
complex number, then the sequence of its Taylor series coefficients at x0 is
polynomial-time computable.

This holds for one and multi-dimensional functions. We will actually use the
following variant of the theorem, obtained by observing that if f is analytic
on Cd, then f is analytic on a neighborhood of x0 and if f is polynomial-time
computable on Cd, then f is polynomial-time computable on a neighborhood of
x0, and that the proof of [23] is rather effective.

Theorem 6. If f is analytic on Cd and polynomial-time computable on Cd,
then the sequence of coefficients {aα}α of its Taylor series at x0, where x0 is a
polynomial-time computable complex number, is polynomial-time computable.

Fix a polynomial p, and restrict to functions f p-poly-bounded: The functional
that maps f , x0, and α to the corresponding coefficient aα is polynomial-time
computable.

5.2 From the Taylor series to the function

Theorem 6 is important because it allows us to go from the function to its
coefficients. But it is only interesting if we can have the converse, that is if we
can go from the coefficients to the function.

The next theorem gives sufficient conditions so that this can happen. A sim-
ilar theorem is already proved in [23] for the case of a polynomial-time com-
putable function on a compact set. However, since we consider functions defined
on unbounded sets over Cd, this requires a different proof.

Theorem 7. Suppose f : Cd → C is analytic and poly-bounded on Cd and that
the sequence {aα} of its Taylor series at x0, where x0 is a polynomial-time com-
putable complex number, is polynomial-time computable. Then f is polynomial-
time computable on Cd.

Even if we can’t pinpoint a polynomial p satisfying a poly-boundedness con-
dition for f , the mere knowledge that f is poly-bounded allows us to conclude
that f can be computed in polynomial time, by using the previous proof. In this
case, we do not know a precise polynomial bound on the time complexity for
computing f , but we do know that such bound exists.

6 Proof of main result

6.1 The special case of integration

We first state a basic result for the case of integration: observe that integration
can be considered as a very specific case of our general theorem.

Theorem 8. If f is analytic, poly-bounded on C, polynomial-time computable,
and x0 is a polynomial-time computable complex number, then

g(x) =

∫
γx

f(z)dz where γx =

{
[0, 1]→ C
t 7→ (1− t)x0 + tx

is analytic, poly-bounded and polynomial-time computable on C.

Moreover, if one fixes a polynomial p and considers only functions f which
are p-poly-bounded, then the transformation is effective and even polynomial-
time computable: the functional that maps f , x0 and x to g(x) is polynomial-time
computable

We remark that the previous theorem implies that the transformation which
computes g(x) =

∫ x
0
f(z)dz for x ∈ R is also computable. Again, we can go

to the version where we don’t have explicit knowledge of the polynomial which
yields poly-boundedness for f .

6.2 On Lipschitz constants

We will need a result about analytic functions (mainly derived from multi-
dimensional Cauchy integral formula) that are poly-bounded.

Proposition 1. If f : Cd → Ce is analytic and p-poly-bounded then for each
R > 0 there is a K(R) > 0 such that

∀x, y, ‖x‖, ‖y‖ 6 R⇒ ‖f(x)− f(y)‖ 6 K(R)‖x− y‖

with
K(R) 6 2q(log2dRe)

where q(x) = p(2 + 4x) + Ad and Ad is a polynomial-time computable constant
in d.

6.3 Proof of Theorem 3

We can now present the proof of Theorem 3. Theorem 2 is clearly a corollary of
it, forgetting effectivity.

We can assume, without loss of generality, that t0 = 0 and x0 = 0. Consider
the following operator

W (u)(t) =

∫ t

0

f(u(ξ))dξ.

Because z is a solution of (2) we easily have

W (z)(t) =

∫ t

0

f(z(ξ))dξ = z(0) +

∫ t

0

ż(ξ)dξ = z(t)

Thus z is a fixed point of W . Now consider the following sequence of functions{
z0(t) = 0
zn+1 = W (zn).

Obviously z0 is analytic. Furthermore, one can easily show by induction (us-
ing Theorem 8) that for all n ∈ N, zn is analytic and polynomial-time com-
putable. More importantly, one can compute effectively zn(t) in polynomial time
in n. Indeed, it is just the iteration of the constructive part of Theorem 8.

Now the crucial idea is that zn uniformly converges to z but only on a (really
small) compact set near 0. Using this result we will use Theorem 5 to extract
the coefficients of z and by using the hypothesis on the boundedness of z we will
obtain z.

First of all, we need a uniform bound of zn (in n). We already know, by
hypothesis, that

‖z(t)‖ 6 2p(log2d|t|e).

Now apply Proposition 1 to f . Let s be a polynomial such that f is s-poly-
bounded and let q be the polynomial of Corollary 1 such that

∀R > 0,∀x, y ∈ Cd, ‖x‖, ‖y‖ 6 R⇒ ‖f(y)− f(x)‖ ≤ K(R)‖x− y‖ (4)

where K(R) = 2q(log2dRe). Let M = 2p(0),R = 2M , T = 1
2K(R) so that

|t| 6 1⇒ ‖z(t)‖ 6M (5)

We will show by induction that

|t| 6 T ⇒ ‖zn(t)− z(t)‖ 6 2−nM. (6)

This is trivial for n = 0 because z0(t) = 0 so if |t| 6 T then |t| 6 1 (we assume,
without loss of generality, p(0) ≥ 0 which implies R ≥ 2, and q(0) ≥ 1, which
implies T 6 1) and, by (5) ‖z0(t)− z(t)‖ = ‖z(t)‖ 6M.

For n > 0, suppose that |x| 6 T . Then

‖zn+1(x)− z(x)‖ 6
∫ 1

0

‖f(zn(tx))− f(z(tx))‖xdt

But now recall that:

– ‖z(x)‖ 6M 6 R = 2M by definition
– ‖zn(x)‖ 6 ‖z(x)‖+ ‖zn(x)− z(x)‖ 6M + 2−nM 6 2M = R

So we can apply (4) and obtain

‖zn+1(x)− z(x)‖ 6
∫ 1

0

K(R)‖zn(tx)− z(tx)‖xdt

6 2−n−1M.

Now that we have (6), the problem is easy because we can uniformly ap-
proximate z on B(0, T) with an arbitrary precision which is exponential on the
number of steps. To put it differently, we proved that z is polynomial-time com-
putable on B(0, T). Notice that in B(0, T) both z and zn are bounded by 2M ,
which can be computed in polynomial time from p. Hence z and zn are poly-
bounded by the same (constant) polynomial on B(0, T) (the behavior outside
this interval is irrelevant for our considerations) and from Theorem 8, the same
polynomial time bound can be used to compute all the zn and z, thus avoiding
the potential problem of having increasing (polynomial) time with n (e.g. dou-
bling in each increment of n) which could yield to overall computing time more
than polynomial.

We can now use a mix of Theorem 5 and Theorem 6 to get the fact that
we can compute the Taylor series of z in 0 in polynomial time (indeed, we only
need to know how to compute z on a open ball around 0). And now, applying
Theorem 7, we know that z is polynomial-time computable because we know by
hypothesis that it is poly-bounded.
Furthermore, the whole process is polynomial-time computable because we gave
explicit bounds on everything and then it is just a matter of iterating a function
and applying two operations on Taylor series at the end.

7 Conclusion

In this paper we have studied the computational complexity of solving initial-
value problems involving analytic ordinary differential equations (ODEs). We
gave special importance to solutions defined on unbounded domains, where the
traditional assumption of numerical analysis – Lipschitz condition for the func-
tion defining the ODE – is no longer valid, making the analysis of the system
non-trivial.

We have shown that if the solution has a bound on its growth – poly-
boundedness – then the solution of the initial-value problem can be computed
in polynomial time as long as f in (2) admits an analytic extension to Cd.

Although the poly-boundedness condition is very generous and encompasses
“usual” ODEs, it would be interesting to know if we can substitute the poly-
boundedness condition by a more natural one. Note that some kind of assumption
over the polynomial differential equations must be used, since their solutions can
be, for example, a function of the type

22
···2

x

(see e.g. [24]) which is not poly-bounded and hence not polynomial-time com-
putable by Corollary 1.

A topic for further work concerns the computational complexity of solving
partial differential equations. This is quite interesting since research from Mills
et al. suggest that from a complexity point of view, the EAC mentioned in
the introduction may beat the Turing machine. It would be a significative hall-
mark for the EAC if one could decide theoretically if the EAC may or may
not have super-Turing power for certain tasks, from a computational complexity
perspective. However this problem seems to be quite difficult due to the lack
of theoretical tools which might help us to settle the question. For instance,
despite huge efforts from the scientific community, no existence-uniqueness the-
orem is known for partial differential equations, even for certain subsets like
Navier-Stokes equations.

References

1. Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser (1991)

2. Shannon, C.E.: Mathematical theory of the differential analyzer. J. Math. Phys.
MIT 20 (1941) 337–354

3. Bush, V.: The differential analyzer. A new machine for solving differential equa-
tions. J. Franklin Inst. 212 (1931) 447–488

4. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
J. Complexity 19(5) (2003) 644–664

5. Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability and unde-
cidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361(6) (2009)
2913–2927

6. Collins, P., Graça, D.S.: Effective computability of solutions of differential in-
clusions — the ten thousand monkeys approach. Journal of Universal Computer
Science 15(6) (2009) 1162–1185

7. Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which
possesses no computable solution. Ann. Math. Logic 17 (1979) 61–90

8. Demailly, J.P.: Analyse Numérique et Equations Différentielles. Presses Universi-
taires de Grenoble (1991)

9. Smith, W.D.: Church’s thesis meets the N-body problem. Applied Mathematics
and Computation 178(1) (2006) 154–183

10. Perko, L.: Differential Equations and Dynamical Systems. 3rd edn. Springer (2001)
11. Ruohonen, K.: An effective Cauchy-Peano existence theorem for unique solutions.

Internat. J. Found. Comput. Sci. 7(2) (1996) 151–160
12. Kawamura, A.: Lipschitz continuous ordinary differential equations are

polynomial-space complete. In: 2009 24th Annual IEEE Conference on Computa-
tional Complexity, IEEE (2009) 149–160

13. Müller, N., Moiske, B.: Solving initial value problems in polynomial time. In: Proc.
22 JAIIO - PANEL ’93, Part 2. (1993) 283–293

14. Müller, N.T., Korovina, M.V.: Making big steps in trajectories. Electr. Proc.
Theoret. Comput. Sci. 24 (2010) 106–119

15. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. 4th edn. John Wiley &
Sons (1989)

16. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations.
McGraw-Hill (1955)

17. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. (Ser. 2–42) (1936) 230–265

18. Grzegorczyk, A.: On the definitions of computable real continuous functions. Fund.
Math. 44 (1957) 61–71

19. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles III. C. R. Acad. Sci. Paris 241 (1955) 151–153

20. Weihrauch, K.: Computable Analysis: an Introduction. Springer (2000)
21. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer

(1989)
22. Ko, K.I., Friedman, H.: Computational complexity of real functions. Theoret.

Comput. Sci. 20 (1982) 323–352
23. Müller, N.T.: Uniform computational complexity of taylor series. In Ottmann, T.,

ed.: 14th International Colloquium on Automata, Languages and Programming.
LNCS 267, Springer (1987) 435–444

24. Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial dif-
ferential equations. Adv. Appl. Math. 40(3) (2008) 330–349

Acknowledgments. This work has been partially supported by the INRIA
program “Équipe Associée” ComputR. O. Bournez and A. Pouly were supported
by ANR project SHAMAN. D. Graça was partially supported by Fundação para
a Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG - Instituto
de Telecomunicações.

