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Unifying Impossibility Theorems:
A Topological Approach*
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In this note a topological approach is developed which permits us to prove
Arrow’s impossibility theorem in the social choice theory using a topological
technique close to that of Chichilnisky. © 1993 Academic Press. Inc.

1. INTRODUCTION

The impossibility theorem of Arrow [1, 4] stays in the center of the
modern social choice theory, both for its significance and beauty. How-
ever, its proof seems a little irrelevant, as a proof of the fix point theorem
without use of algebraic topology, e.g., by means of Sperner’s lemma, that
is, in a combinatorial way. The beauty and simplicity of Arrow’s theorem
suggests that it has somewhat more adequate background, which might tie
it in with more advanced mathematics and provide possibilities for wider
ramifications than those we have now. The title of the paper and the hint
above shows in which direction this conjectured background was searched.

There are some impossibility theorems in the social choice theory
proven in topological style. This approach was initiated and developed
mainly by Chichilnisky (see, e.g., [2, 3]). The bad news is that not only the
means were topological, but the goals as well: preferences were defined as
smooth functions on R", say, nontrivial linear ones, and the aggregation
rule was assumed to be continuous in some topology. In general, this
theory seems to have more connections with the smooth approach to the
equilibrium theory than with the classical social choice theory. However,
Chichilnisky’s reasonings were as simple as beautiful; that pointed to their
fundamentality.

*This work was partly supported by Alexander-von-Humboldt-Stiftung.
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I briefly recall one of her results (slightly modified). Let the preferences
be linear functionals on R” having norm one, and an aggregation rule, i.e.,
a mapping f to the space of preferences W = §" ! from that of profiles
P = W¥* is given. Impose the following axioms on the mapping: it is
continuous, and respects binary unanimity; that is, if an alternative x € R”
is preferred to y € R” by all voters, then the aggregating rule estimates x
higher than y. We say, that a voter is a manipulator, if for any tuple of
preferences of other voters he can choose his preference to produce any
a priori given functional as the aggregated preference (that is, a reasonably
weakened substitute of dictatorship). Then Chichilnisky’s theorem says,
that (when n > 1) there always exists exactly one manipulator.

The proof consists of two parts. First, one shows that if the voter / is a
manipulator then the operator in (n — 1)-dimensional homologies associ-
ated with f maps the /th basis vector of H,_ (P) = Z* to the generator
of H,_ (W) = Z, otherwise to zero.

The second part of the proof is a simple calculation: the diagonal of P,
(i.e., the set of profiles with equal preferences) represents in (n — 1)-
homologies of P the sum of the basic vectors. Its image with respect to f
is the generator of H,_,(W) = Z. Thus one and only one of the basic
vectors goes to the generator of H,_ (W) = Z; that proves the theorem.

The goal of this note is to show, that combinatorial as it is, Arrow’s
theorem can be obtained by some arguments of topological nature. To do
this we construct some topological spaces naturally associated with the
objects of the combinatorial theory. The most surprising fact is how
suitable this theory appears to be treated in a topological, or, better, in a
homological way.

Let us recall the setup of the Arrow theorem. The initial data are: a
natural k—the number of voters; natural n > 3—the number of candi-
dates. A mapping from the set of profiles, that is, of k-tuples of weak
orders on {1,2,...,n} to the set of weak orders itself—the aggregation
rule—is given. The following axioms are assumed:

Axiom of Independence of Infeasible Alternatives. The result of compar-
ing of a pair {, j € K according to the aggregated preference depends only
on such results in every weak order of the tuple given.

Unanimity Axiom. 1If all the voters have the same preference on a pair
{i, j}, then the aggregated rule has to coincide with them on the pair.

We will take the independence axiom as our cornerstone. It says that
results of the pairwise comparing are in fact the only thing of interest for
us. Another way to say the same is: the preimage (with respect to the
mapping defining the aggregation rule) of the set of weak orders with
better than j is a union of products of such sets in the multiples of the set
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of profiles. Now the intuitive idea is to consider such sets as open, and the
collection of them as a covering of their union. That introduces topology
into the setting.

At this point anyone acquainted with the basics of algebraic topology
says that the next step is to consider the nerves of the coverings in
question.

The nerve of a covering of a (topological) space by (open) sets is the
simplicial complex, whose vertices one-to-one correspond to the sets of the
covering, and a simplex spanned by some vertices lies in the complex if
and only if these sets intersect.

Remark 1. Note that we make the picture more complex from the
topological point of view: while the topology generated on our finite set of
weak orders by the “open” sets was the discrete one, we leave it and arrive
at the nerve of a certain covering of this set, whose topology, as we will
see, is nontrivial. However, it is the topological nontriviality of the last set
that is responsible for the choice paradoxes. Such a nontriviality hidden in
the set of orders was noted by D. Saari [5]. However, he did not reveal the
topological background of the model, although some of his assertions can
be easily reformulated in our terms.

Thus we take two finite sets—of preferences and of profiles—and their
special coverings and try to reformulate our initial problem in terms of
respective nerves. The topology of the nerve of the covering of preferences
we study in Section 3. In Section 4 the topology of the nerve associated
with the space of profiles is investigated. It appears that it is close enough
to that of the k-fold product of the nerve of preferences. The analogy with
Chichilnisky’s setup is apparent.

The independence axiom can be easily reformulated in terms of the
nerves of the coverings of the spaces of preferences and profiles described
above. In fact, the aggregation rule defines the simplicial mapping of these
simplicial complexes. The unanimity axiom describes the restriction of the
mapping on an analogue of the diagonal. All that is the subject of Sec-
tion 5.

The dictatorship property also has reformulation as a homological
property of the mapping between our simplicial complexes. Thus we arrive
in Section 6 with a situation that is completely analogous to that of the
topological approach of Chichilnisky.

Remark 2. Such a parallelism cannot be coincidental. 1 think that it
points to the possibility of a unification of the social choice theory on a
deeper level. Maybe even more surprising connections are in sight. In fact,
all this theory deals with the topology of the permutahedron—the convex
hull of the orbit of a generic vector under the action of the group of
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coordinate permutations. This object is very popular in some rather
remote areas of mathematics. This digression needs special consideration,
so I will not go into any details here.

I do not define any topological notions here; they all are fairly elemen-
tary and standard and can be found in any primer on algebraic topology.
All homology and cohomology we use here are singular with Z as coeffi-
cients.

2. PRELIMINARIES

Let {n] denote the set {1,2,..., n}, interpreted as the set of alternatives
to be compared. The set of all weak orders on [#] we will denote by W
and that of strict orders (or, equivalently, the set of all permutations of
[n]) by W,. Throughout we assume n > 3. Let k > 2 be the number of
voters. We set P = W%, P, = W to be the set of profiles of preferences
on [n].

Let f be an aggregation rule, that is, a mapping of P to W, satisfying
the independence of infeasible alternatives and Pareto (binary unanimity)
axioms.

Lemma 1. The image of the restriction of f on P, lies in W,,.

Proof. Let for some i, j € [n] and some profile p € Py; we obtain
i =y J. Then for a profile p’ with an element k € [n] placed between j
and i, when j is better with respect to corresponding to the voter’s
preference, and below j otherwise, we have i =, J > 50 k. For a
profile p” with k between i and j, when | is better, and above j otherwise,
we have k > J =¢,» i Thus the result of ranking of i/ and k depends
on the position of j—a contradiction.

Having this lemma in mind we will restrict our further attention to strict
orders only, referring to them simply as to orders.

Let o €{+,-); i, j €[n], i <j. Sets of orders with given ranking of
elements i, j we will denote as %}

U= {weWyi>, j}; ;= {we W;i<, j}.

Obviously, sets %7 cover W,,.
Let @ = (0y,..., ;) be a vector of signs, o, € {+, —}. We set

02‘5' = {P =(wy,....,w) €EPyiw, € @m}‘

£

Clearly, {%7} form a cover of P,,.
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3. ToroLOGY OF PREFERENCES

Let Ny be the nerve of the covering of W, by the sets %;. We will
assume henceforth that the sets %/ are in an obvious way lexicographi-
cally ordered’ and the N, is a subcomplex of the (n(n — 1) — 1)-

dimensional simplex A .

ProposiTioN 1. Dimension of Ny, (i.e., the maximal dimension of its
simplices) is (n + 1Xn — 2)/2. The simplices of maximal dimension are in
one-to-one correspondence with strict orders on [n]. The complex Ny, coin-
cides with the union of such simplices of maximal dimension.

Proof. 1f a simplex in N, is spanned by more than n(n ~ 1)/2
vertices, then at least two vertices are indexed by the same pair {i, j}. But
%, and %; do not intersect. Thus dim Ny, <n(n — 1)/2—-1=
(n + 1Xn — 2)/2. Clearly, strict orders lie in the intersection of (n + 1)
(n — 2)/2 sets %;; with compatible ranking of / and j. It is obvious as
well that any nonempty intersection of (n + 1Xn — 2)/2 sets %, is a
strict order. At last, any set of pairwise comparisons defining acyclic order
can be extended to a strict order with pairwise ranking retained. That

proves the last statement.

A useful tool to operate with simplices of N, is to associate to any
simplex its graph.

Let 8 be an m-dimensional simplex of N,,. Define the graph g(8) as
oriented with the set of vertices [n] and the set of arrows defined by the
vertices of &: if %fl € A, then the arrow from i to j is in g(8); if 7, € 4,
then that from j to i is in g. Obviously, sets of vertices of the simplices of
Ny, are in one-to-one correspondence with (simple) oriented graphs on [n]
without cycles. An orietantion of § is canonically defined by the ordering
of %’ class of numberings of arrows of G(8).

TueoreM 1. The simplicial complex N, is a homotopy equivalent to the
(n — 2)-dimensional sphere S" 2.

To prove the theorem we construct a model of N, i.e, a manifold, with
a covering, which has N, as its nerve. For such a model we, naturally, will
take the n-dimensional Euclidean space R” with the deleted diagonal
A={(x,...,x) €R", M=R"\ A. Let U; be the hemispace {x; > x}.
Obviously, the sets {U}, ;. <, cover M. Note that W, is naturally
embedded in M as the set of vectors whose coordinates form a permuta-

'That is, we associate to G)tfj the ordered pair {i, j}, and to %;; the ordered pair {j, {}, and
we order them lexicographically.
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tion. Clearly, the coverings of W, by %]’s and U,;’s coincide; thus Ny, is a
subcomplex of the nerve N, of the covering of M by U,/’s.

LeEmMmaA 2. These complexes coincide: Ny, = N,,.

The proof is obvious; any order on a finite set can be represented by a
function.

Proof of the Theorem 1. All the sets U, are convex subsets of Eu-
clidean space; thus their intersections are convex as well, and the covering
is fine. That is, all the sets and their intersections are contractible. It
follows that the nerve of the covering, which is Ny, has the same
homotopy type as M itself, which obviously has the homotopy type of the
(n — 2)-dimensional sphere §" 2.

There is a very important class of cycles representing the generator of
(n — 2)th homology group of N, (isomorphic to Z). Namely, let us choose
a simple cycle of length n on [n], considered as an unoriented graph. Any
orientation of its edges gives us a subset of the set of vertices of the
“large” simplex A,,, i.e., its subsimplex spanned by vertices corresponding
to arrows. Denote the oriented graph (whose unoriented support is our
cycle) by g, and the corresponding subsimplex of the total simplex as §(g)
(note that the orientation of this simplex is canonically defined through
the ordering of vertices of the total simplex).

Let the chain h(g) be the boundary of 8(g). Obviously, h(g) is a cycle.

ProrosiTion 2. The cycle h(g) lies in the group of (n — 2)-dimensional
cycles of Ny,. If g is an oriented cycle (remember, g is an oriented graph),
then h(g) represents a generator of H, (N ); otherwise it is zero.

Proof. The chain d8(g) is a sum of (n — 2)-dimensional simplices
spanned by all but one of the arrows of g. These arrows obviously define
some acyclic relation on [n], which can be extended to some strict order.
This strict order defines some simplex of N, (of maximal dimension),
which has the simplex under consideration as a face. Thus all simplices of
the cycle ¢(g) are in N,. If g is not an oriented cycle, then it can be
extended to a strict order as well, and the simplex spanned by arrows of g
lies in N, annihilating A(g) in the homologies. If g is an oriented cycle,
then the halfspaces corresponding to its arrows cover R" \ A. Thus the
embedding of the (homotopic) sphere h(g) into N, is the homotopy
equivalence, and h(g) represents a generator of H, _,.

4. ToroLOGY OF SPACE OF PROFILES

As we know, sets %] form a covering of P,,. Denote the nerve of the
covering by Nj.
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ProrosiTion 3.  Dimension of Np (i.e., the maximal dimension of its
simplices) equals the dimension of Ny,. The simplices of the maximal
dimension are in one-to-one correspondence with k-tuples of strict orders on
[n]. The complex Np coincides with the union of closures of its simplices of
maximal dimension.

Proof. Any simplex with the number of vertices larger than n(n — 1)/2
would have at least two vertices with the same pair {i,j} of indices.
Corresponding sets either coincide or are disjoint. Other statements are
obvious.

To study the topology of N, we will apply once again the approach of
the previous section. Let (R")* = R™* be the space of k-tuples of n
vectors. As before, we use an identification of orders on finite set [n] with
R-valued functions on [r].2 Now we have to describe the topology of the
model M, of N, which is the union of sets,

{(xl,...,xk),x’ER":x,(>xj’» ifo,= +,and x{ <x|if o, = —},

a=(oy,...,0,) €{+, -}, i <je[n], for which we will keep notation
. The covering of M, by the sets %7 is fine, because they are convex
subsets of R"* and the nerve of this covering coincides with N.

The topology of M, is rather complicated. But at least in the dimen-
sions we need its homology behaves exactly as one could wish, i.e., as that
of a direct product.

ProprosITION 4. The (singular, with coefficients in Z) cohomology groups
of M, are zeros in positive dimensions up to n — 2, and H"~*(M,) = Z*.

Proof. For a pair {i, j} take the union of %,-‘f over all &’s. The result is
the product of k items of R” with deleted hyperplane {x; = x}, i, R"¥
without the cross C,; which is the union of ij-diagonals {x, = x;} in its
multiples. The union of all such R"¥’s with deleted crosses over all pairs
{i,j} can be represented as R™* without the union of intersections over all
pairs {i,} of diagonals {x, = x;} in (possibly) different multiples. The
count of the dimensions shows that such intersections have codimension
n — 1 or more and that the only hyperplanes of the codimension (n — 1)
are the diagonals {x, = x, = -+ =x,} in multiples R" of R". That,
obviously, proves the proposition.

20t course, there are a lot of functions corresponding to the same order, but by restricting
our attention on some special coverings and having proved that our problems can be encoded
in terms of these coverings, we can hope that the topology of the nerve of the covering,
reflecting in turn the topology of our manifolds, faithfully represents the combinatorial
features of our initial problem.
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Thus homology and cohomology groups of Ny in dimensions up to
n — 2 are as in the k-fold product of N,,. The mapping of vertices of N,
to these of Ny, sending the tuple of comparisons to its /th component can
be extended to the mapping of the simplicial complexes p;: Np — Ny,

ProPOSITION 5. Let ¢ be a generator of H" *(N,,). Then elements
pF(c) form the basis of H" *(N,) = Z*. (Here p} are linear operators in
cohomologies, induced from p,).

Proof. We will construct in (n — 2)-homologies of N, a basis which
will consist of & cycles h;, which p,, project into the respective generators
of H,_,(N,)when k = m, and to zero otherwise. Let g = (g, £5,.--, 8)
be a k-tuple of oriented graph on [n] with the same unoriented support,
which is a cycle of length n; for definitivity we take the cycle 1 — 2
— -+ —n — 1. Such a tuple defines the set of n vertices of N, in obvious
way: %7, , has the sign o, as directed by the arrow between i and i + 1
in the respective graph g,. Any n — 1 of these vertices define a simplex in
Np; their sum with the respective signs is a cycle. We will denote it as h(g).
This cycle upon projection p, goes to the cycle A(g,) of N,. If we take
k-tuple of graphs g having the oriented cycle 1 =2 — --- - n — 1 as
its /th graph and acyclic graphs on other places, we will obtain the basis in
question. The pairing of 4, and pj(c) gives, obviously, §,,. Thus
{pF(c)), < <y Is the basis in H""*(Np) (and {h},_, . is the basis in
H, _(Np).

Let D be the mapping of Ny, to Np, which sends % to 02/5, where &
is the replica-vector of o. Obviously, this mapping can be extended to that
of simplicial complexes. We will call it diagonal embedding.

5. TorpoLOGY OF AGGREGATION RULE

Remember that the aggregation rule is a mapping f: P — W. Clearly,
the axiom of independence of infeasible preferences is equivalent to the
fact that the f-image of the subset %7 is in one subset %%, which defines
the mapping from N, to Ny, for which we will keep the notation f. Thus
the following diagram of simplicial mappings is defined:

D f

w > Np > Ny
YN

Ny Ny

N
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ProrosITION 6. All composite mappings from N, to itself in this
diagram are identical.

The only thing to note here is that the equality of Do f = idy, is
equivalent to the binary unanimity (or Pareto) axiom.

Now we will consider how dictatorship reflects in homologies. Let
{h}-

,,,,,

ProrosiTioN 7. If voter I is a dictator, then (h,, f*(c) = 1; otherwise it

is 0.

Proof. Let g be the k-tuple of oriented graphs with the same unori-
ented support 1 — 2 — -+ —n — 1, whose associated cycle h(g) repre-
sents k4, in H,_,(N,). Clearly, the image of h(g) with respect to f is again
a cycle in Ny, defined by an oriented graph g with the same unoriented
support. Let g, be the cycle 1 -2 - -+ - n— 1. If g is not an
oriented cycle, then the images of all simplices of A(g) have common
vertex %7,, say %7, It follows that f maps a profile with /th preference
2 — .-+ —n — 1toa preference with 1 over 2, and / is not a dictator. If
the common vertex is %, then / is not a dictator because the aggregated
rule contradicts its preferences on {1, 2}.

Of course, that g is not an oriented cycle is equivalent to (f, (A(g)), ¢)
= (fy.(h),c) = (h,, f*(c)) = 0, where the parentheses denote pairing
between cohomologies and homologies on N,.

Inversely, let f,(h,) be a generator of H,_,(N,,). That means that g is
an oriented cycle. If we will vary all but /th components of g in such a way
that graphs g,, m # [ are not oriented cycles and graph g remains the
same. Indeed, all mentioned changes can be done sequentially by changing
the orientation of one arrow in one component. That can lead only to a
change of the orientation of only one arrow of g. But g have to remain
the oriented cycle; thus it is rigid. By the described changes one can
achieve any tuples of orientations of arrows of g,,, m # | between 1 and
2; the resulting preference will be the same. Particularly, if all the
orientations agree, we obtain that the aggregated preference on (1,2}
coincides with that of the /th voter. The cycle g, representing the
homological generator can be chosen to include any arrow { — j. Thus / is
a dictator.

6. Easy CALCULATIONS

Let us axiomatize the resulting picture we have found in the previous
section. Let A and B be two simplicial complexes, such that in some
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k
i=1

dimension m we have H™(B) = &, H™(A), and the commutative dia-

gram of simplicial mapping is

4—2.5-1 .4
N
A PR A

such that all composite mappings from A to itself in this diagram are
identical and that all (p,), act in the mth homologies as projections on
direct factors in the above decomposition. We will call such data purely
separated (in dimension m).

DeriniTION.  Let we have purely separated the data as above. The
index I, I =1,...,k, is said to be a homological dictator if the composite

mapping
Gp, fe
Hm(A) ——)Hm(B) - m(A)
is an isomorphism and homologically irrelevant if it is trivial.

Now what is proved in Section 4 is the pure separateness of Arrow’s
data (in our setup) and in Section 5 is that any dictator (in usual sense) is a
homological dictator and that any non-dictator is homologically irrelevant.

Exactly in the same way one sees that in Chichilnisky’s setup the data
are purely separated and that a voter is a manipulator iff he is a
homological dictator, and he is homologically irrelevant otherwise. Now
both Arrow’s and Chichilnisky’s impossibility theorems follows from a
simple theorem.

THeoreM 2. If we have purely separated (in dimension m) data such
that the mth homological group of A contains free part (that is, Z). Assume
that any index | € {1, ..., k} is either a homological dictator or homologi-
cally irrelevant. Then there exists exactly one homological dictator.

For the proof we need one more lemma.

LemMa 3. The homological embedding D, of H,(A) into H,(B) is the
diagonal one; that is, for any h € H,(A) we have D ,(h) = (h,...,h) €
H,(B).

The proof of the lemma reduces to the definition of pure separatedness.

Proof of the theorem. Let h € H_(A)is a free generator. According to
the previous lemma, the composite mapping f, D, takes & into L¥_ dh,
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where d, = 1 if [ is homological dictator, and zero otherwise. As it has to
be identical, the sum equals one, thus proving the theorem.

Thus a homological dictator always exists and is unique.

7. CONCLUDING REMARKS

7.1. Original Arrow’s Theorem

As it was published, the impossibility theorem of Arrow needs less.
Specifically, it is assumed, that f is defined not on the whole P, or P, but
on a subset, such that for any triple of candidates the restriction of
admissible profiles on this triple is full; i.e., it contains all possible profiles
of preferences on the triple. Note, that in this case we can again apply our
technique. The only thing that remains to prove is that dictators for
different triples are the same voter. That again can be done through
topology. Specifically, one can show that in the two-skeleton of N, (which
is responsible for n — 2 = 3 — 2 = one-dimensional (co)homology), re-
spective generators for different triples are homological; thus the dictator
for all triples is the same.

7.2. Domain Conditions

The usual approach to “resolve the independence paradox” is to intro-
duce a domain condition, i.e., to reduce in some way the set of admissible
preferences. The most simple and known approach in “discrete” social
choice theory is “single-peakedness”: for an ordering of [#] (say, 1 - 2 —

- — n) only such orders are allowed for which taking sequential alter-
natives 1,2,...,n one meets only one local maximum, that is, orders
havingthe form 1 < 2 « -+ i - .-+ —n,

On the topological side, Chichilnisky and Heal [3] have shown that the
proper domain restriction is contractibility of the space of preferences
(that is, its homotopy equivalence to the point).

Our considerations suggest that “discrete” domain restrictions have to
be formulated in terms of the topology of N, with some deleted simplices
(forbidden orders) of maximal dimension. Ideally were the killing of all
homology groups. Moreover, as the presence of a dictator on any subset of
candidates is not desirous, the respective homology groups of subcom-
plexes of N}, corresponding to these subsets have to be zero as well.

An intriguing fact is that this goal is achieved for ‘“single-peaked”
orders. For n = 3 the vanishing of homologies and single peakedness are
equivalent. I hope to return to the question in subsequent publications.
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