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Abstract

We present a randomized algorithm for computing portions of an arrangement of n
arcs in the plane, each pair of which intersect in at most t points. We use this algorithm
to perform online walks inside such an arrangement (i.e., compute all the faces that a
curve, given in an online manner crosses), and to compute a level in an arrangement,
both in an output-sensitive manner. The expected running time of the algorithm is
O(λt+2(m + n) log n), where m is the number of intersections between the walk and
the given arcs.

No similarly efficient algorithm is known for the general case of arcs. For the case
of lines and for certain restricted cases involving line segments, our algorithm improves
the best known algorithm of [OvL81] by almost a logarithmic factor.

1 Introduction

Let Ŝ be a set of n x-monotone arcs in the plane, each pair of which intersect in at most
t points. Computing the whole (or parts of the) arrangement A(Ŝ), induced by the arcs
of Ŝ, is one of the fundamental problems in computational geometry, and has received a
lot of attention in recent years [SA95]. One of the basic techniques used for such construc-
tions is based on randomized incremental construction of the vertical decomposition of the
arrangement (see [BY98]).

If we are interested in only computing parts of the arrangement (e.g., a single face or
a zone), the randomized incremental technique can still be used, but it requires non-trivial
modifications [CEG+93, dBDS95]. Intuitively, the added complexity is caused by the need
to “trim” parts of the plane as the algorithm advances, so that it will not waste energy on
regions which are no longer relevant. In fact, this requirement implies that such an algorithm
has to know in advance what are the regions we are interested in at any stage during the
randomized incremental construction.
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A variation of this theme, with which the existing algorithms cannot cope efficiently, is
the following online scenario: We start from a point p = p(0) ∈ R2, and we find the face
f of A(Ŝ) that contains p(0). Now the point p starts moving and traces a connected curve
{p(t)}t≥0. As our walk continues, we wish to keep track of the face of A(Ŝ) that contains
the current point p(t). The collection of these faces constitutes the zone of the curve p(t).
However, the function p(t) is not assumed to be known in advance, and it may change when
we cross into a new face or abruptly change direction in the middle of a face (see [BDH99]
for an application where such a scenario arises). The only work we are aware of that can deal
with this problem efficiently is due to Overmars and van Leeuwen [OvL81], and it only applies
to the case of lines (and, with some simple modifications, to certain restricted cases involving
line segments as well).1 It can compute such a walk in (deterministic) O((n+m) log2 n) time,
inside an arrangement of n lines, where m is the number of intersections of the walk with
the lines of Ŝ. This is done by maintaining dynamically the intersection of half-planes that
corresponds to the current face.

In this paper, we propose a new randomized algorithm that computes the zone of the
walk in a general arrangement of arcs, as above, in O(λt+2(n+m) log n) expected time, where
λt+2(n + m) is the maximum length of a Davenport-Schinzel sequence of order t + 2 having
n+m symbols [SA95]. The new algorithm can be interpreted as a third “online” alternative
to the algorithms of [CEG+93, dBDS95]. The algorithm is rather simple and appears to be
practical. As a matter of fact, we had implemented and experimented with a variant of the
algorithm [AHH+99].

As an application of the new algorithm, we present an algorithm for computing a level
in an arrangement of arcs. It computes a single level in O(λt+2(n + m) log n) expected time,
where m is the complexity of the level. We also show how to adapt the main algorithm
to obtain a point-location algorithm that locates m points in an arrangement of n arcs,
as above, in expected time O(λt+2(n + m + w) log n), where w is the minimum number of
intersections between a spanning tree connecting those query points and the given arcs.

Both results improve by almost a logarithmic factor over the best previous result of
[OvL81], for the case of lines (and for certain cases involving line segments).2 For the case
of general arcs, we are not aware of any similarly efficient previous result.

The paper is organized as follows. In Section 2 we describe the algorithm. In Section 3
we analyze its performance. In Section 4 we mention a few applications of the algorithm,
including the construction of a single level, and multiple point-location. Concluding remarks
are given in Section 6.

2 The Algorithm

In this section, we present the algorithm for performing an online walk inside a planar
arrangement.

1Recently, an improvement has been given by Chan [Cha99a] and was further improved by Brodal and
Jacob [BJ00]; their algorithm can perform an update in O(log n log log n) amortized time, and answer queries
(of the kind used in this application) in O(log n) time per query.

2Our results are also asymptotically faster and much simpler to implement than what is yielded by the
recent results of Chan [Cha99a, Cha99b], and Brodal and Jacob [BJ00]
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Randomized Incremental Construction of the Zone Using an Oracle. Given a set
Ŝ of n x-monotone arcs in the plane, so that any pair of arcs of Ŝ intersect at most t times
(for some fixed constant t), let A(Ŝ) denote the arrangement of Ŝ; namely, the partition
of the plane into faces, edges, and vertices as induced by the arcs of Ŝ (see [SA95] for
details). In the following, we need two basic geometric primitives for splitting and merging
vertical trapezoid, SplitGeom, MergeGeom, illustrated in Figure 1. We assume that Ŝ is in
general position, meaning that no three arcs of Ŝ have a common point, and that the x-
coordinates of the intersections and endpoints of the arcs of Ŝ are pairwise distinct. The
vertical decomposition of A(Ŝ), denoted by AVD(Ŝ), is the partition of the plane into vertical
pseudo-trapezoids, obtained by erecting two vertical segments up and down from each vertex
of A(Ŝ) (i.e., each point of intersection between a pair of arcs and each endpoint of an arc),
and by extending each of them until it either reaches an arc of Ŝ, or otherwise all the way
to infinity. See, e.g., [BY98, SA95] for more details concerning vertical decompositions. To
simplify (though slightly abuse) the notation, we refer to the cells of AVD(Ŝ) as trapezoids.
A selection R of Ŝ is an ordered sequence of distinct elements of Ŝ. By a slight abuse of
notation, we also denote by R the unordered set of its elements. Let σ(Ŝ) denote the set of
all selections of Ŝ. For a permutation S of Ŝ, let Si denote the subsequence consisting of the
first i elements of S, for i = 0, . . . , n.

(a)
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(b)
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Figure 1: Geometric primitives: (a) SplitGeom(∆, s) splits ∆ into a O(1) vertical trape-
zoids that cover the original trapezoid and their interior is not crossed by s. (b)
MergeGeom({τ1, τ2, τ3}) - merge the adjacent trapezoids τ1, τ2, τ3 with the same top and bot-
tom arcs into a single trapezoid ∆.

Computing the decomposed arrangement AVD(Ŝ) can be done in a randomized incremen-
tal manner (see [BY98]). Let γ be the curve traced by the walk. For a selection R ∈ σ(Ŝ),
let Dγ(R) (resp. Zγ(R)) denote the district (resp. zone) of γ in A(R); these are, respectively,
the set of all trapezoids of AVD(R) and the set of all faces of A(R) that have a nonempty
intersection with γ. Let Aγ,VD(R) denote the set of all trapezoids in AVD(R) that cover

Zγ(R). Our goal is to compute Aγ,VD(Ŝ). (Alternatively, we may be interested only in

computing the district Dγ(Ŝ) of γ.)
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We assume for the moment that we are supplied with an oracle O(Si, γ, ∆), that can
decide in constant time whether a given vertical trapezoid ∆ is in Aγ,VD(Si). Equipped with
this oracle, computing Aγ,VD(S) is fairly easy, using a variant of the randomized incremental
construction, outlined above. The algorithm, called CompZoneWithOracle, is depicted in
Figure 2. We present this algorithm at a conceptual level only, because this is not the
algorithm that we shall actually use. It is given to help us to describe and analyze the actual
online algorithm that we shall present later.

Algorithm CompZoneWithOracle(Ŝ, γ, O)

Input: A set Ŝ of n arcs, a curve γ, an oracle O
Output: Aγ,VD(Ŝ)

begin
Choose a random permutation S = 〈s1, s2, . . . , sn〉 of Ŝ.
C0 ← {R2}
for i from 1 to n do

Di ←
{

∆
∣∣∣ ∆ ∈ Ci−1, int ∆ ∩ si 6= ∅

}
Temp← ∅
for each ∆ ∈ Di do

Temp← Temp ∪ SplitGeom(∆, si),
where SplitGeom(∆, s) is the operation of splitting a vertical
trapezoid ∆ crossed by an arc s into a constant number of
vertical trapezoids, as in [dBvKOS00], such that the new
trapezoids cover ∆, and they do not intersect s in their interior.

end for
Merge all the adjacent trapezoids of Temp that have the same top

and bottom arcs. Let Temp1 be the resulting set of trapezoids.
Let Temp2 be the set of all trapezoids of Temp1 that are in Aγ,VD(Si).

Compute this set using |Temp1| calls to O.
Ci ← (Ci−1 \ Di) ∪ Temp2

end for
Remove from Cn all trapezoids not belonging to Aγ,VD(Ŝ), by checking

with O each trapezoid of Cn.
return Cn

end CompZoneWithOracle

Figure 2: A randomized incremental algorithm for constructing the zone of a walk in an
arrangement of arcs, using an oracle

Note that the set of trapezoids Ci maintained by the algorithm in the i-th iteration
is a superset of Aγ,VD(Si). There might be trapezoids in Ci that are no longer in Zγ(Si)
(typically these are trapezoids that are separated from Zγ(Si) by an arc that does not
cross their interior and is intersected after they have been created). However, this implies
that any such trapezoid will be eliminated the first time an arc that crosses it will be
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Figure 3: Illustration of the definitions: ν is a transient splitter, and thus τ, τ ′ are both
transient. We have rank(τ) = index(τ) = 4, rank(∆) = 3, and index(∆) = 5, where
S = 〈l1, l2, l3, l4, l5〉.

handled, or, if no such arc exists, at the final clean-up step of the algorithm. Moreover,
the algorithm CompZoneWithOracle can be augmented to compute a history DAG (as in
[SA95]), whose nodes are the trapezoids created by the algorithm and where each trapezoid
destroyed during the execution of the algorithm points to the trapezoids that were created
from it. Let HT γ(Si) denote this structure after the i-th iteration of the algorithm. Note
that the out-degree of each node of HT γ is bounded by a constant that depends on t.

Definitions. A trapezoid created by the SplitGeom operation of CompZoneWithOracle is
called a transient trapezoid if it is later merged (in the same iteration) to form a larger
trapezoid. A trapezoid generated by CompZoneWithOracle is final if it is not transient. The
rank rank(∆) of a trapezoid ∆ is the maximum of the indices i, j of the arcs containing the
bottom and top edges of ∆ in the permutation S. We denote by D(∆) the defining set of a
final trapezoid ∆; this is the minimal set D such that ∆ ∈ AVD(D). It is easy to verify that
|D(∆)| ≤ 4. We can also define D(∆) for a transient trapezoid ∆, to be the minimal set
D such that ∆ can be transient during an incremental construction of AVD(D). Here it is
easy to verify that |D(∆)| ≤ 6. The index index(∆) of a trapezoid ∆ is the minimum i such
that D(∆) ⊆ Si. For a trapezoid ∆, we denote by cl(∆) the conflict list of ∆; that is, the
set of arcs of Ŝ that intersect ∆ in its interior. next(∆) denote the first element of cl(∆),
according to the ordering of S.

In the algorithm, whenever we compute a trapezoid, we also compute its conflict list.
The overall running time of the algorithm is dominated by the time required to compute
and manipulate those conflict lists. Generally speaking, if a trapezoid is created from a
parent trapezoid by splitting, we can compute the conflict list, by scanning the parent
conflict list and checking for each arc if it intersects the new trapezoid. If a trapezoid
is formed by merging several trapezoid, its conflict list can be computed by merging the
trapezoids conflict-list. This can be done in linear time in the size of the input conflict
lists, as described below. Since a conflict list participate only in a constant number of
such merge/split operations, the overall time required to manipulate those conflict lists is
proportional to their overall size.

For a trapezoid ∆ generated by CompZoneWithOracle, which was not merged into a larger
trapezoid, we denote by father(∆) the trapezoid that ∆ was generated from. A vertical side
of a trapezoid ∆ is called a splitter. A splitter ν is transient if it is not incident to the
intersection point (or endpoint) that induced the vertical edge that contains ν (this means
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that the two trapezoids adjacent to ν are transient, and will be merged into a larger final
trapezoid). See Figure 3 for an illustration of some of these definitions. It is easy to verify
that a trapezoid ∆ is transient if and only if at least one of its bounding splitters is transient.
Thus, one can decide whether a trapezoid is transient, by inspecting its splitters, in constant
time.

The online algorithm constructs portions of HT γ(S) incrementally, as they are needed.
This is done by performing a sequence of point locations in the arrangement, where each
such query constructs the final trapezoid of AVD(Ŝ) that contains the query point, plus all
ancestor trapezoids that lie on paths of HT γ(S) from the root to that trapezoid. Informally,
instead of building HT γ(S) layer-by-layer, as is done by CompZoneWithOracle, the online
algorithm constructs the DAG in an ‘orthogonal’ DFS manner. The intuition behind the
design and efficiency of the algorithm is that the expected number of nodes in HT γ(S) is
only O(λt+2(n + m)), whereas the overall expected running time of CompZoneWithOracle is
O(λt+2(n + m) log n) (this is the expected overall size of the conflict lists of the computed
nodes, which the algorithm needs to construct and manipulate). Both bounds are easy
consequences of known results, and will be discussed in Section 3.2. Thus, in our quest to
usurp the oracle, we can afford to pay an extra O(log n) time during the search for and
construction of each node of HT γ(S). This indeed will be the cost of a point-location query
(ignoring the time required for constructing any new node of HT γ(S) that the query has to
pass through). Informally, the online algorithm performs essentially the same operations as
the preceding algorithm, except that it executes them in a different order, and, in addition,
it may revisit again and again portions of the DAG that have already been constructed as
it searches down the DAG while performing point locations. However, since this extra cost
is only logarithmic, it does not increase the asymptotic complexity of the algorithm.

An Online Algorithm for Constructing the Zone. Before describing the algorithm in
detail, we refer the reader to Appendix A, which provides a pseudo-code for some relevant
procedures used by the algorithm, and Appendix B, which presents an example of how
the following algorithm works. The reader is encouraged to consult with the Appendices
whenever the definitions and the description become too vague.

Let us assume that the random permutation S of Ŝ has been fixed in advance. Note that
S predetermines HT γ = HT γ(S). The key observation in the online algorithm is that in
order to construct a specific leaf of HT γ(S) we do not have to maintain the entire DAG,
and it suffices to compute only the parts of the DAG that lie on paths connecting the leaf
with the root of HT γ (there might be several such paths, since our structure is a DAG, and
not a tree).

To facilitate this computation, we maintain a partial history DAG, denoted by T . The
nodes of T are of two types: (i) final nodes: those are nodes whose corresponding trapezoids
appear in HT γ = HT γ(S), and (ii) transient nodes: these are some of the leaves of T , whose
corresponding trapezoids are transient. A transient node can be easily detected since its
trapezoid is transient. A final node is simply a node which is not transient. In particular, all
the internal nodes of T are copies of identical nodes of HT γ (whose corresponding trapezoids
are final), while some of the leaves of T might be transient. Intuitively, T stores the portion
of HT γ that we have computed explicitly so far. The transient leaves of T delimit portions of
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HT γ that have not been expanded yet. Inside each node of T , we also maintain the conflict
list of the corresponding trapezoid ∆ and its first element next(∆).

Suppose we wish to compute a leaf of HT γ that contains a given point p. We denote this
operation by PointLocate(p). We first locate the leaf of T that contains p. This is done by
traversing a path in T , starting from the root of T , and going downward in each step into the
child of the current trapezoid that contains p (each such step requires O(1) time, because, as
already noted, the out-degree of any node of HT γ, and thus of T , is bounded by a constant
that depends on t). (A technical issue that we face is that usually p lies on some trapezoid
boundary, so we need additional local information to determine which child to descend to
at each of the above steps — see below for more details) At the end we either reach a final
leaf (with an empty conflict list) which is the required leaf of HT γ, or we encounter a leaf
v of T . In the latter case, we need to expand T further below v. If v represents a transient
trapezoid, then the first step is to replace v by the corresponding node v∗ of HT γ, obtained
by merging the transient trapezoid of v with adjacent transient trapezoids, with identical
top and bottom arcs, to form the final trapezoid associated with v∗. If v is a final node we
expand it by splitting it with the first arc that crosses its trapezoid, using steps (iv) and (v)
below.

Assume for the moment that we are supplied (for the case where v is transient) with a
method (to be described shortly) to generate all those adjacent transient trapezoids, whose
union forms the final trapezoid that is stored at v∗ in HT γ. Then we do the following: (i)
Merge all those transient trapezoids into a new (final) trapezoid ∆; (ii) Compute the conflict
list cl(∆) from the conflict lists of the transient trapezoids; (iii) Compute the first element
s∆ = next(∆) in cl(∆) according to the permutation S; (iv) Compute all the transient or
final trapezoids generated from ∆ by splitting it by s∆ (this generates O(1) new trapezoids);
and (v) Extract from cl(∆) the conflict list cl(∆′) of each new trapezoid ∆′, and compute
next(∆′) as well.

Overall, this requires O(k + l) time, where k is the number of transient trapezoids that
are merged, and l is the total length of the conflict lists of these transient trapezoids. This
is trivial to show for steps (i), (iii), (iv) and (v). To perform in step (ii) the merging of the
conflict lists in linear time, one may use a global bit-vector structure. Namely, we initialize
before the execution of the algorithm a bit-vector b of size n to be everywhere zero. To
merge several conflict lists L1, . . . , Lk, we scan each list in turn, and for each of its elements
sj, we first test whether bj = 0; if so, we add sj to the output conflict list, and change bj to
1. After creating the output conflict list in this manner, we scan the output list, turning off
all the bits that got turned on.

In this manner, we have upgraded a transient leaf v of T into a final node v∗. We
denote this operation by Expand(v). We can now continue going down in T , passing to the
child of ∆ that contains p and repeating recursively the above procedure at that child, until
constructing and reaching the desired leaf of HT γ that contains p (namely, until we reach a
node that is final and had empty conflict list).

To complete the presentation of this point location mechanism, we describe Expand(v),
the procedure that computes the ‘sibling’ transient trapezoids that are adjacent to the tran-
sient trapezoid of v.

Let τ be the transient trapezoid. Then either the top arc or the bottom arc of τ are the
cause of the splitting that generated τ . In particular, next(τf ) is either the top or bottom
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arc of τ , where τf = father(τ) denotes the trapezoid that τ was generated (split) from. This
also implies that rank(τ) = index(τ). Since τ is transient, one of the splitters of τ must be
transient. Let ν denote such a transient splitter, and let us assume that ν is the right edge
of τ . Note also that τf must be a final trapezoid, so in particular ν was generated from a
final splitter (by the insertion of an arc that separated ν from the vertex that induced the
bigger final splitter).

We compute the transient trapezoid τ ′ that lies to the right of τ and has the same top
and bottom arcs, by taking the midpoint p of ν, and by performing a point-location query of
p in T using (recursively) the same mechanism described above. During this point-location
process, we always go down into the trapezoid ∆ that contains p in its interior or on its left
edge; see below for details. We stop as soon as we encounter a transient trapezoid τ ′ that has
a left edge identical to ν. This happens when τ and τ ′ have the same top and bottom edges;
namely, we stop when rank(τ) = rank(τ ′). (Intuitively, if the trapezoid τ ′ has rank smaller
than rank(τ), then either it fully contains ν in its interior, or its left edge is longer than (and
contains) ν; the first time when both τ and τ ′ have the same connecting edge is when their
top and bottom edges are identical, namely, when rank(τ) = rank(τ ′).) See below for more
details in the proof of correctness of the algorithm. We continue this process of collecting
adjacent transient trapezoids using point-location queries on midpoints of transient splitters,
until the two extreme splitters (the left splitter of the leftmost trapezoid in the sequence and
the right splitter of the rightmost trapezoid) are non-transient. We take the union of those
trapezoids to be the new expanded trapezoid. See Figure 3 for a scenario where such a
merging occurs. A more detailed illustration is given in Appendix B below.

Of course, during this point-location process, we might be forced into going into parts of
HT γ that are rather remote from the point p. In such a case, we will compute those parts in
an online manner, by performing PointLocate and Expand calls on the relevant trapezoids
that we encounter while going down T . Thus, the point-location process is recursive, and
might be quite substantial. Nevertheless, as will be argued below, the overall cost of the
PointLocate and Expand operations is not excessive, so these operations are efficient in an
amortized sense.

Let γ be the curve of the online walk whose zone we wish to compute. We consider γ to be
a directed curve, supplied to us by the user through a function EscapePointγ. The function
EscapePointγ(p, ∆) receives as input a point p ∈ γ, and a trapezoid ∆ that contains p, and
outputs the next intersection point of γ with ∂∆ following p. If γ ends before we reach ∂∆,
the function returns nil. We assume (although this is not crucial for the algorithm) that γ
does not intersect itself.

Let GS denote the adjacency graph of AVD(Ŝ). This is a graph having a vertex for
each trapezoid in AVD(Ŝ), such that an edge connects two vertices if their corresponding
trapezoids share a common vertical side. Under general position assumptions, each vertex in
GS has degree at most 4. It is easy to verify that a connected component of GS corresponds
to a face of A(Ŝ). Given a final leaf-trapezoid ∆, we can compute the face of A(Ŝ) that
contains ∆ by performing a DFS in GS. This is done by performing point-location queries
on appropriate points on the splitters of ∆, in a manner similar to that used in the Expand

operation. This yields all the neighbors of ∆ in GS, and we continue in this manner until
the entire connected component of GS containing ∆ is constructed.

Thus, given a walk γ, we can compute its zone by the algorithm CompZoneOnline de-
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picted in Figure 4. See Appendix A for the pseudo-code of the main subroutines used by
CompZoneOnline, and Appendix B for an illustration of the execution of CompZoneOnline.

As will be shown in Section 3.1, by the time the algorithm terminates, the final parts of T
are contained in HT γ. (A proper inclusion might arise; see Remark 3.13.) In analyzing the
performance of the algorithm, we first bound the overall expected time required to compute
HT γ, which can be done by bounding the expected running time of CompZoneWithOracle
(in an appropriate model of computation). Next, we will bound the additional time spent
by the algorithm in traversing between adjacent trapezoids (i.e., the additional time spent
in performing the point-location queries).

Remark 2.1 By skipping the expansion of the face that contains the current point p in
CompZoneOnline, we get a more efficient algorithm that only computes the district D of the
walk, that is, the collection of trapezoids in AVD(Ŝ) that γ crosses. There are cases where
this will be sufficient; see Section 4 (e.g., in the adaptation of the algorithm for computing
a level in an arrangement).

3 Analysis of CompZoneOnline

3.1 Correctness

In this subsection, we establish the correctness of CompZoneOnline. Before starting, we note
that the correctness of CompZoneWithOracle is easier to establish, and follows routinely from
standard considerations. We therefore omit any further details concerning this issue.

The main technical issues that arise in the proof of correctness have to do with the
potentially complex patterns of exploring the DAG T that can arise during the recursive
execution of the PointLocate and Expand routines. The first main step in the proof is to
show that the Expand routine always terminates properly, with a transient trapezoid that
is compatible with the input one. Once this is shown, the rest of the proof is a routine,
though somewhat involved, task, which employs induction on the structure of T and on the
sequence of steps executed by the algorithm.

Lemma 3.1 During the execution of CompZoneOnline, the union of trapezoids of the leaves
of T form a pairwise disjoint covering of the plane by vertical trapezoids.

Proof: By induction on the steps of CompZoneOnline, noting that this is true initially,
and that each step that modifies T either merges leaf trapezoids into a larger leaf trapezoid
or splits a leaf trapezoid into subtrapezoids.

Corollary 3.2 Each conflict list, as computed for a (transient or final) trapezoid ∆ by the
procedure CompZoneOnline, is the list of all arcs of S that cross (the interior of) ∆.

Proof: By induction on the steps of CompZoneOnline. Observe that the region(s) that
∆ was generated from cover ∆, and thus the union of their conflict lists must contain, by
the induction hypothesis, the correct conflict list of ∆, which is thus correctly constructed
by the appropriate Expand or PointLocate step.
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Algorithm CompZoneOnline(Ŝ, p, EscapePointγ)

Input: A set Ŝ of n arcs, a starting point p of the walk,
and a function EscapePointγ that represents the walk

Output: The decomposed zone Aγ,VD(Ŝ) of γ in A(Ŝ)
begin

Choose a random permutation S = 〈s1, s2, . . . , sn〉 of Ŝ.
T ← {(R2, S)} - a partial history DAG with a root corresponding to

the whole plane; the conflict list of the root is the whole S.
v ← PointLocate(p, ·),

where PointLocate(p, ·) is the leaf of HT γ whose associated trapezoid
contains p. (The procedure has an additional flag parameter
that we ignore here; it is used in cases where p lies on trapezoid
boundaries; see Section A and below.)

/* All the paths in HT γ from v to the root now exist in T . */
D ← {∆v} (∆v is the trapezoid stored at v.)
while ( p 6= nil ) do

p← EscapePointγ(p, ∆v)
w ← PointLocate(p, +),

where (p, +) denotes a point p+ on γ just past p, and w is the next leaf
of HT γ, such that p+ ∈ ∆w. This is done by performing a
point-location query in T , as described in the text, and expanding T
accordingly.

v ← w
D ← D ∪ {∆v}

end while
if only the district of γ needs to be computed then

return D (the district of γ in AVD(Ŝ))
Z ← ∅
for each ∆ ∈ D

Compute the face F of ∆v in Aγ,VD(S) (if it had not yet been computed).
Z ← Z ∪ F

end for
return Z.

end CompZoneOnline

Figure 4: Algorithm for constructing the zone of a walk in an arrangement of arcs in an
online manner. See Appendix A for the pseudo-code of the main subroutines used by
CompZoneOnline, and Appendix B for an illustration of the execution of CompZoneOnline.
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Corollary 3.3 For a trapezoid ∆ created by CompZoneOnline, all the arcs of D(∆) appear
in S before all the arcs of cl(∆).

Consider an Expand operation that is triggered by point location at the midpoint p of a
transient splitter ν that bounds a transient trapezoid τ , where τ has already been generated
in T and we wish to find the transient trapezoid τ ′ that shares ν with τ as a common splitter.
(It is easily verified that τ ′ uniquely defined, given the permutation S.) Let i denote the
rank of τ . As noted, i is also the index of τ . Clearly si must be either the top or the bottom
arc of τ . Assume, without loss of generality, that ν is the right splitter of τ and that si is
the top edge of τ . Let sj be the bottom arc of τ , with j < i.

Lemma 3.4 During the execution of this Expand step, ignoring recursive calls, all the trape-
zoids that are either visited or generated fully contain ν either in their interior or within their
left edge. Consequently, for any such trapezoid, except for the last one, either its conflict list
contains si and sj, or it contains si and sj is the bottom arc of the trapezoid. Moreover, if
this sequence of trapezoids includes a trapezoid that does contain ν on its left edge then all
subsequent trapezoids in the sequence have this property.

Proof: This is shown by induction on the sequence of steps of this (nonrecursive portion
of the) execution of Expand. For this proof, we assume that during this execution, any
recursive call to Expand terminates correctly, with a transient trapezoid that is adjacent to
the trapezoid that initiated the recursive call and has the same top and bottom arcs. If this
is not the case, we assume that the algorithm aborts at that point, and from that point on
there is nothing to prove. (We thus modify the algorithm for the purpose of the proof, but
a subsequent argument (in Lemma 3.5 below) will show that the algorithm never aborts.)

The first node that the Expand procedure visits is the root of T , and the claims clearly
hold in this case. Assume they hold for all trapezoids up to and including a trapezoid ∆.
Suppose first that ∆ is final, and let sk = next(∆). By induction hypothesis, the conflict list
of ∆ contains si, so we must have k ≤ i. Then Corollary 3.3 implies that sk does not cross
the relative interior of ν. This implies that the subtrapezoid ∆′ of ∆ that is split from it by
sk and contains (a point slightly to the right of) the midpoint of ν must fully contain ν in
its closure. If ∆ contained ν on its left side then clearly this also holds for ∆′.

If ∆ is transient then there are two subcases: If the top and bottom edges of ∆ are,
respectively, si and sj, then the Expand procedure terminates and returns ∆; the claims
clearly hold in this case. Otherwise, the Expand procedure executes a recursive call with
the midpoint of some (transient) splitter of ∆. As argued above, we may assume that this
recursive call returns a transient trapezoid compatible with ∆, in the above sense. We
repeat this step, if needed, until we obtain a sequence of compatible transient trapezoids,
including ∆, which cannot be expanded any further. We then merge all these trapezoids into
a trapezoid ∆′, which clearly must be final. It is obvious, by construction, that ∆′ satisfies
the first assertion of the lemma.

To prove the second assertion (for transient trapezoids), assume that ∆ contains ν on
its left edge ν0. It suffices to show that ν0 is not transient (which will imply that ∆ is not
merged with other trapezoids on its left, so that this left splitter will be contained in ν0), so
assume to the contrary that it is transient. As already noted, a transient splitter like ν0 is
generated when we insert an arc s` that delimits ν0 and separates it from the vertex w that
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induced it. Once this occurs, ν0 will trigger a call to Expand which, if properly terminated,
will erase ν0 as it merges ∆ with adjacent transient trapezoids. As argued above, we have
` < i (because si ∈ cl(∆)).

The same argument also implies that the trapezoid τf from which τ has been split (by
the insertion of si) has a non-transient right splitter ν∗ that contains ν and extends all the
way to the vertex w. Thus, by Corollary 3.2, the conflict list of τf contains s`, so next(τf )
cannot be si, contrary to assumption.

This induction step completes the proof of the lemma.
As a consequence, it is easily verified by induction that, during the execution of this

Expand step, including all recursive calls, no arc sk with k > i is processed.
We now show that each call to Expand terminates correctly.

Lemma 3.5 Each point-location query at the midpoint of a transient splitter generates a
“compatible” transient trapezoid; that is, a transient trapezoid adjacent to the current tran-
sient trapezoid, that has the same top and bottom arcs.

Proof: Suppose the lemma is false, and consider the first call where this happens, where
we order the calls in the order of returns from Expand (i.e. in postorder on the recursion
forest). Let ∆ be the transient trapezoid that initiated this call, and assume, without loss
of generality, that the call started at the right splitter ν of ∆, and that the top and bottom
edges of ∆ are, respectively, si and sj, with i > j. Arguing as in the proof of Lemma 3.4, we
have that during the execution of the nonrecursive portion of this call, the procedure visits
or generates a sequence Σ of trapezoids, each of which contains ν, and, by the induction
hypothesis, all recursive calls that it executes terminate properly.

Let sk, s`, with k < `, be the two arcs that intersect at the vertex w that induced a
splitter that contains ν (the case where w is an endpoint of an ark sk is handled similarly).
Clearly, we must have k < ` < i. Moreover, w must lie above ν, or else the insertion of sj

would have disconnected ν from w; since si has not yet been inserted at that stage, it easily
follows that ν could not have been formed at all. It is easily seen that any trapezoid τ ∈ Σ
that contains ν in its interior must either contain sk and s` in its conflict list or be bounded
by sk and contain s` in its conflict list. Hence, as can be easily verified, sk and s` will
eventually be processed in splitting operations during this execution, and will consequently
generate trapezoids in Σ that contain ν on their left edge. Moreover, either si and sj appear
in the conflict list of any such trapezoid, or si appears in the conflict list and sj bounds
the trapezoid on the bottom. Eventually, si will thus be inserted, and then the resulting
trapezoid will be compatible with ∆ and the procedure will terminate correctly, contrary to
assumption.

Lemma 3.6 For any final trapezoid ∆ created by the Expand procedure, during the execution
of CompZoneOnline, ∆ is a trapezoid of AVD(Si), where i = index(∆).

Proof: By induction on the depth of the nodes in T , where the depth of a node is defined
to be the length of the longest path from the root of T to this node.

The only node of depth 0 is the root of T , which is being computed during the initial-
ization of the algorithm, and is also the only trapezoid in AVD(S0).
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Assume that the induction hypothesis holds for all trapezoids of depth < k, and let ∆ be
a final trapezoid of depth k in T . There are two cases to consider: (a) ∆ has been generated
by splitting a final trapezoid τ by inserting some arc si. (b) ∆ has been obtained by merging
several transient trapezoids.

In case (a), by induction hypothesis, τ is a trapezoid of AVD(Sj), where j = index(τ).
By Corollary 3.2, the conflict list of τ is computed correctly, so no arc s`, with j < ` < i,
crosses τ . Hence τ is also a trapezoid of AVD(Si−1), and, by construction, any final trapezoid
obtained by splitting τ with si is a trapezoid of AVD(Si). Since i = index(∆), this completes
the induction step in this case.

In case (b), let τ1, . . . , τm be the transient trapezoids whose merging forms ∆. By con-
struction, all of them have the same top arc, say si, and the same bottom arc, say sj.
Suppose, without loss of generality, that i > j. Since these trapezoids are transient, we
have, as argued above, index(τ`) = rank(τ`) = i for each ` = 1, . . . ,m. In particular, this
also holds for the leftmost and rightmost trapezoids in this sequence, which is easily seen to
imply that all the arcs in D(∆) belong to Si. Finally, since the conflict lists of the τ`’s are
computed correctly, and the conflict list of ∆ is the union of these lists, it follows that no
arc in that list belongs to Si. In other words, ∆ is a final trapezoid defined by arcs of Si and
no arc of Si crosses its interior. This readily implies that ∆ is a trapezoid of AVD(Si), and
this completes the induction step in this case, and thus completes the proof of the lemma.

Lemma 3.7 All the (final) non-leaf nodes computed by CompZoneOnline appear in HT γ.

Proof: What we really need to show is that each non-leaf trapezoid ∆ in T belongs to
Aγ,VD(Si−1), where si is the arc that has split ∆, thus making it a non-leaf. Indeed, any such
trapezoid belongs to HT γ, by construction and by correctness of CompZoneWithOracle.

The proof proceeds by induction on the sequence of trapezoid-splitting steps taken by
CompZoneOnline. That is, a final non-leaf trapezoid ∆ will be considered when it is split
by an arc (thus becoming a non-leaf). The claim clearly holds initially for the whole plane,
stored at the root of T (and of HT γ). Let ∆ be a non-leaf final trapezoid generated in T and
then split by an arc si by CompZoneOnline, and suppose that all previously-split non-leaf
trapezoids in T appear in HT γ. The trapezoid ∆ has been split as part of a point-location
query with some point p. Suppose first that p ∈ γ or p lies on a splitter of a final trapezoid
of AVD(Ŝ) (the later case occurs when we expand the district of γ into its zone). Since
∆ is split at that point, it follows by construction that p ∈ ∆ and therefore ∆ belongs to
Aγ,VD(Si−1).

Otherwise, p is the midpoint of some transient splitter ν, and the point location of p is
part of some Expand operation. Again, p (and in fact the whole segment ν) belongs to ∆.
Let τ be the transient trapezoid bounded by ν that has triggered that Expand operation,
and let τ0 be the first transient trapezoid (in the execution order of CompZoneOnline) in the
sequence of compatible trapezoids that includes τ . let τf be the father of τ0, which is a final
(non-leaf) trapezoid from which τ0 has been split by an arc sj. By induction hypothesis, τf

belongs to Aγ,VD(Sj−1). Hence τ0 is fully contained (as a set) in the zone of γ in A(Sj−1).
By the preceding analysis, we know that (a) sj is the top or bottom arc of τ0 and of τ , and
(b) during the whole Expand operation that started at τ0 no arc beyond sj is inserted. It
follows that p belongs to the zone of γ in A(Sj−1), and that si, the arc that has split ∆, must
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satisfy i ≤ j. Hence ∆ belongs to the zone of γ in A(Si−1), which establishes the induction
step and thus completes the proof of the lemma.

Lemma 3.8 All the trapezoids of Aγ,VD(Ŝ) are computed by CompZoneOnline.

Proof: Consider first the sequence of trapezoids of AVD(Ŝ) that constitute the district
of γ in the full arrangement, in the order in which they are traversed by γ. The proof first
proceeds by induction on this sequence, arguing that each of these trapezoids is produced
by CompZoneOnline. As implied by the preceding analysis, each point-location query with a
point p returns the trapezoid of AVD(Ŝ) that contains p. Hence, if the k-th trapezoid in the
above sequence has been generated, the EscapePointγ function produces a point that lies
in the next trapezoid, which will therefore also be produced by CompZoneOnline. A similar
argument holds for the subsequent stage of the algorithm that expands the district of γ into
its zone.

3.2 Running Time

In this subsection, we first analyze the performance of CompZoneWithOracle, and then use
this analysis to bound the expected running time of CompZoneOnline. We assume that
CompZoneWithOracle maintains for each trapezoid ∆ its conflict list cl(∆) that stores the
set of arcs that cross it. We also assume that each conflict list cl(∆) stores its minimal
element next(∆) in the ordering of S, and that each yet uninserted arc s maintains a list of
all current trapezoids ∆ for which next(∆) = s. Then it is easy to see that the running time
of the algorithm is proportional to the overall size of all the conflict lists that it generates.
We also assume that a call to the Oracle O takes O(1) time.

Lemma 3.9 The algorithm CompZoneWithOracle computes the zone of γ in AVD(Ŝ) in
O(λt+2(n + m) log n) expected time, and the expected number of trapezoids that it generates
is O(λt+2(n + m)).

Proof: The proof is a straightforward adaptation of the proof of [CEG+93].3 Specifically,
we first make m cuts at the points where γ crosses the arcs of Ŝ, thereby obtaining a collection
of m + n subarcs, so that Zγ(Ŝ) becomes a single face in the new arrangement. We now

insert the original arcs of Ŝ one by one in the random order S. It is easily checked that the
expected number of subarcs of the r random arcs have been inserted is O

(
r + m

n
r
)
. Thus, the

expected number of trapezoids maintained in the r-th iteration is O
(
λt+2

(
r + m

n
r
))

. Using
Clarkson-Shor sampling technique [CS89, Mul94] implies that the overall expected weight of
those trapezoids in the r-th iteration is O(λt+2(n + m)). However, the expected work in the
r-th iteration is the expected weight of the newly created trapezoids, and the probability of
a trapezoid (that appears in the set of trapezoids maintained by the algorithm after the r-th
iteration) to be created in the r-th iteration is O(1/r). We conclude, that the expected work
in the r-th iteration is O(λt+2(n + m)/r). Summing over r = 2, . . . , n, we conclude that the
expected overall running time of the algorithm is O(λt+2(n + m) log n).

3The algorithm of [CEG+93] has some additional overhead that is not required in CompZoneWithOracle
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Lemma 3.10 The expected number of transient trapezoids generated by CompZoneOnline is
O(λt+2(n + m)), and the expected total size of their conflict lists is O(λt+2(n + m) log n).

Proof: Each final trapezoid generated by CompZoneOnline might be split into O(1) tran-
sient trapezoids. Each final (non-leaf) trapezoid computed by CompZoneOnline is also com-
puted by CompZoneWithOracle, as follows from Lemma 3.7. By Lemma 3.9, the expected
number of such trapezoids is O(λt+2(n + m)).

The second part of the lemma follows by a similar argument.

Definition 3.11 A curve γ is locally x-monotone in A(Ŝ), if it can be decomposed inside
each face of A(Ŝ) into a constant number of x-monotone curves.

Theorem 3.12 The algorithm CompZoneOnline computes the zone of γ in A(Ŝ) in
O(λt+2(n + m) log n) expected time, provided that γ is a locally x-monotone curve in A(Ŝ).

Proof: The time spent by CompZoneOnline is bounded by the time required to construct
the history DAG, by the time spent in maintaining the conflict lists of the trapezoids, and
by the time spent on performing point-location queries, as we move from one trapezoid to
another in Aγ,VD(S).

By Lemmas 3.9 and 3.10, the expected time spent on maintaining the conflict lists of the
trapezoids computed by the algorithm is O(λt+2(n + m) log n), since the total time spent on
handling the conflict lists is proportional to their total length. By Lemma 3.10, the expected
total size of those conflict lists is O(λt+2(n + m) log n).

Moreover, the depth of the history DAG constructed by the algorithm is O(log n) with
a probability polynomially close to 1 [Mul94]. Thus, the expected time spent directly on
performing a single point-location query (that is, the number of trapezoids that contain the
query point and are visited or generated during this point location step) is O(log n). The
curve γ is locally x-monotone, which implies that it intersects each splitter of any trapezoid
of any Aγ,VD(Ŝ) at most O(1) times. Thus, the expected number of point-location queries
performed by the algorithm is proportional to the expected number of transient and final
trapezoids created, plus O(m). By Lemma 3.10, we have that the expected running time is

O
(
λt+2(n + m) log n + (λt+2(n + m) + m) log n

)
= O(λt+2(n + m) log n) .

Remark 3.13 Note that CompZoneWithOracle computes the zone of γ in AVD(Si), for each
i = 1, . . . , n. As a consequence, it might compute a trapezoid ∆ ∈ Aγ,VD(Si) that does not
intersect the zone of γ in Aγ,VD(S). In particular, such a trapezoid ∆ will not be computed
by CompZoneOnline. This is a slackness in our analysis that we currently do not know
whether it can be exploited to further improve the analysis of the algorithm (we suspect
that it cannot improve the above asymptotic bound on the running time).

Remark 3.14 The only classical result of this type that we are aware of, is due to Overmars
and van Leeuwen [OvL81]. It maintains dynamically the intersection of n halfplanes in
(deterministic) O(log2 n) time for each insertion or deletion operation. This procedure can
be used to perform walks inside line arrangements in (deterministic) O((n+m) log2 n) time,
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Figure 5: The first level in an arrangement of segments (the vertical edges show the jump
discontinuities of the level, but are not part of the level).

where m is the number of intersections of the walk with the lines. Our algorithm is somewhat
simpler and is faster than the algorithm of [OvL81] by nearly a logarithmic factor, and, most
importantly, applies to more general arrangements.4

The technique of [OvL81] can also be used to perform x-monotone online walks in ar-
rangement of segments. We simply regard each segment as the full line that contains it,
but make it active only when the walk passes vertically above or below the segment. This
means that, in addition to the usual updates that the algorithm performs, we also insert
(resp. delete) segments when the walk becomes co-vertical with their left (resp. right) end-
point. (If the walk is not x-monotone, this may slow down the algorithm considerably.)

As for general arcs (or non-monotone walks in arrangements of segments), we are not
aware of any result of this type in the literature. Of course, if the curve γ is known in advance
(and is simple, in the sense that one can compute quickly its intersections with any arc of
Ŝ), we can compute the single face containing γ in an appropriately modified arrangement
(as in the proof of the general planar Zone Theorem [SA95, Theorem 5.11]; see also the proof
of Lemma 3.9 using the algorithms of [dBDS95, CEG+93]. These algorithms (especially the
first one) are slightly simpler than the algorithm of Theorem 3.12, although they have the
same expected performance. However, these algorithms are useless for online walks, and
they are probably slower than our algorithm in practice, as they either maintain additional
complicated data-structures [CEG+93], or perform additional redundant computation of
regions that lie outside the zone of γ [dBDS95].

Recently, several algorithms for performing online walks were implemented [AHH+99],
including a variant of the algorithm presented here, which exhibited satisfactory performance
in practice.

4 Applications

In this section we present several applications of the algorithm CompZoneOnline.

4Recently, Chan [Cha99a] improved the result of [OvL81], providing a data structure for maintaining
intersection of halfplanes in O(log1+ε n) amortized time for each update. His data structure is considerably
more complicated than ours and than that of Overmars and van Leeuwen, and currently seems to be only of
theoretical significance. Moreover, our algorithm is still faster than Chan’s (by a factor of O(logε n)). Very
recently, this result was further improved by [BJ00].

16



4.1 Computing a Level in an Arrangement of Arcs

In this subsection we show how to modify the algorithm of the previous section to compute
a level in an arrangement of x-monotone arcs.

Definition 4.1 Let Ŝ be, as above, a set of n x-monotone arcs in the plane, any pair of
which intersect at most t times (for some fixed constant t). We also assume, as above, that
Ŝ is in general position. The level of a point in the plane is the number of arcs of Ŝ lying
strictly below it. Consider the closure El of the set of all points on the arcs of Ŝ having level
l (for 0 ≤ l < n). El is an x-monotone (not necessarily connected) curve (which is polygonal
in the case of lines or segments), which is called the level l of the arrangement A(Ŝ). At
x-coordinates where a vertical line intersects less than l + 1 arcs of S, we consider El to be
undefined.

Levels are a fundamental structure in computational and combinatorial geometry, and
have been subject to intensive research in recent years (see [AACS98, Dey98, TT97, TT98]).
Tight bounds on the complexity of a single level, even for arrangements of lines, proved
to be surprisingly hard to obtain. Currently, the best known upper bound for the case of
lines is O(n(l + 1)1/3) [Dey98], while the lower bound is Ω(n log (l + 1)) [Ede87].5 See also
[AACS98, TT98] for weaker upper bounds for other classes of arcs.

First, note that if Ŝ is a set of lines, then, once we know the leftmost ray that belongs
to El, the level l is locally defined: as we move from left to right along El, each time
we encounter an intersection point (a vertex of A(Ŝ)) we have to change the line that we
traverse. (This is also depicted in Figure 5.) In particular, we can compute the level El

in O(λ3(n + |El|) log n) time, using CompZoneOnline. The same procedure can be used to
compute a level in an arrangement of more general arcs. The only non-local behavior we
have to watch for are jump discontinuities of the level caused when an endpoint of an arc
appears below the current level, or when the current level reaches an endpoint of an arc (see
Figure 5). See below for details concerning the handling of those jumps.

In the following, let 0 ≤ l < n be a prescribed parameter. Let El denote the level l in
the arrangement A(Ŝ).

The following adaptation of CompZoneOnline to our setting is rather straightforward,
but we include it for the sake of completeness. We sort the endpoints of the arcs of Ŝ by
their x-coordinates. Each time our walk reaches the x-coordinate of the next endpoint, we
update El by jumping up or down to the next arc, if needed. This additional work requires
O(n log n) time.

If the level reaches the x-coordinate x0 of a right endpoint of an arc, past which there
are fewer than l + 1 arcs intersecting a vertical line, then the level lies on the highest arc
just to the left of x0 and it ceases to be defined just to the right of x0. In this case, our
walk climbs to the line y = +∞ and moves along the line (effectively tracing a sequence of
topmost trapezoids of A(Ŝ)) until it reaches the x-coordinate of a left endpoint of an arc,
following which we might have again l + 1 arcs crossing a vertical line. If so the walk then
descends on the topmost arc and continues to trace the level l. For simplicity, we continue
the discussion of the algorithm assuming that El is everywhere defined.

5Recently, a slightly larger lower bound has been announced by G. Tóth [Tót99].
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During the walk, we maintain the invariant that the top edge of the current trapezoid is
part of El. To compute the first trapezoid in the walk, we compute the intersection of level
l with the y-axis (this can be done by sorting the arcs according to their intersections with
the y-axis). Let p0 be this starting point. We perform a point-location query with p0 in our
virtual history DAG to compute the starting trapezoid ∆0 (containing p0 on its top arc).

Now, by walking to the right of ∆0 we can compute the part of El lying to the right of
the y-axis. Let ∆ be the current trapezoid maintained by the algorithm, such that its top
edge is a part of El. Let p(∆) denote the top right vertex of ∆. By performing point-location
queries in our partial history DAG T , we can compute all the trapezoids of AVD(Ŝ) that
contain p(∆) (by our general position assumption, the number of such trapezoids is at most
6; this number materializes when p(∆) lies in the intersection of two arcs). By inspecting
this set of trapezoids, one can decide where El continues to the right of ∆, and determine
the next trapezoid having El as its roof. The algorithm sets ∆ to be this trapezoid.

If the algorithm reaches an x-coordinate of an endpoint of an arc, we have to update El

by jumping up (if this is the right endpoint of an arc and it lies on or below the level) or
down (if it is a left endpoint and lies below the level); namely, we set ∆ to be the trapezoid
lying above (or below) the current ∆.

The algorithm continues in this manner, until reaching the rightmost edge of El. The
algorithm then performs a symmetric walk to the left of the y-axis to compute the other
portion of the level.

Let CompLevel denote this modified algorithm. We summarize our result:

Theorem 4.2 The algorithm CompLevel computes the level l in A(Ŝ) in
O(λt+2(n + |El|) log n) expected time.

Remark 4.3 Since CompLevel is online, we can use it to compute the first m′ edges or
vertices of El, in expected O(λt+2(n + m′) log n) time.

Remark 4.4 A straightforward extension of CompLevel allows us to compute any connected
path within the union of Ŝ (i.e., we restrict our “walk” to the arcs of Ŝ) in an on-line manner,
in randomized expected time O(λt+2(m + n) log n), where m is the number of vertices of the
path. As above, the extended version can also handle vertical jumps between adjacent arcs
during the walk.

Remark 4.5 For the case of lines, one can use the algorithm of [OvL81] to construct a
level El in O(n log n + |El| log2 n) deterministic time, as described, e.g., in [EW86]. The
same technique, with a simple modification, also works for the case of line segments, with
the same complexity bounds. Our algorithm is faster in these cases by nearly a logarithmic
factor.

As already mentioned, recently, Chan [Cha99a] presented a faster algorithm for the dy-
namic maintenance of the intersection of halfplanes, requiring O(log1+ε n) amortized time
for each operation. Thus, one can compute the level l in O(n log n + |El| log1+ε n) determin-
istic time. Chan [Cha99b] also showed that by using the algorithm of [AdBMS98] one can
compute the level l in O(n + |El|α(n)2 log n) randomized expected time. Those results were
very recently improved by Brodal and Jacob [BJ00]. We note, however, that our algorithm
is still faster and simpler than those two algorithms.
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4.2 Other Applications

In this subsection, we provide some additional applications of CompZoneOnline and CompLevel.

Theorem 4.6 Let L be a set of n lines in the plane, and let 0 < ε ≤ 1 be a prescribed
constant. Then one can compute a (1/r)-cutting of A(L), having at most (1+ε)(8r2−2r+4)
trapezoids. The expected running time of the algorithm is O

((
1 + 1

ε

)
nrα(n) log n

)
, where

α(n) is the inverse of the Ackermann function [SA95].

Proof: Follows by plugging the algorithm of Theorem 4.2 and Remark 4.3 into the algo-
rithm described in [Har00a].

For a discussion of cuttings of small asymptotic size, and their applications, see [Mat98,
Har00a].

Remark 4.7 Theorem 4.6 improves the previous result of [Har00a] by almost a logarithmic
factor.

Once we have computed the level l (in an arrangement of general arcs), we can clip the
arcs to their portions below the level. Using those clipped arcs as input, we can compute
the portion of the arrangement below the level l (i.e., the first l levels of A(Ŝ)) in O((m +
n) log n + r) time, where m = |El| is the complexity of the level l, and r is the complexity
of the first l levels of A(Ŝ), using, e.g., the algorithm described in [Mul94]. This improves
over the previous result of [ERvK96] that computes this portion of the arrangement of lines
in O(n log n + nl) time. (Note that this running time is not output sensitive: It is easy to
come up with examples where the complexity of the first l levels is only O(l2).)

5 Implementation

The algorithm described in this paper was implemented and compared to some other heuris-
tics/algorithms for constructing zone in an online manner for an arrangement of lines,
see [AHH+99]. The source code of our program is available at [Har00b]. As a compet-
ing algorithm we had implemented the following variant CompZonePoly, which differs from
CompZoneOnline in the following two key points:

• CompZonePoly does not perform merging of adjacent compatible regions. Thus, the
history DAG is now a tree.

• Each node in the history tree corresponds to a convex polygon of bounded complexity.
Namely, if the polygon that corresponds to a node has more than c edges (where c
is a prescribed constant), then the polygon is being further split into two regions,
and the corresponding node becomes the parent of two new nodes. The motivation
for this variant is that the average number of vertices of a face in an arrangement of
lines is about 4. Thus, in this representation most faces (and intermediate faces) will
correspond to a single node in the history tree.

Currently, we do not have any bounds on the performance of CompZonePoly and we leave it
as open question for further research. Nevertheless, CompZonePoly performs extremely well
in practice, and was one of the two fastest algorithms tested in [AHH+99].
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5.1 Geometric Filtering

To overcome the problems of robustness and degeneracies, we had used the exact arithmetic
as provided by the rational numbers of LEDA [MN95]. Unfortunately, using exact arithmetic
in a naive way, slowdown the program by a factor of 20–40 [Har00a]. One possible way to
achieve reasonable performance is to use filtering techniques. Here, one uses representation
of numbers that maintain the history of the computations that generated them, so that if
necessary the computations are recomputed using a higher level of precision. Such arithmetic
types are provided by LEDA real, and LEDA rational kernel. While filtering suppose to be a
care-free approach to this problem, as one can apply it easily to a program without rewriting,
its performance is still inferior compared to the technique described below.

The idea is to implement filtering in the geometric level. Here each geometric entity has
two representations: one is a floating-point representation (i.e., inexact) and the other one
is an implicit exact representation. For example, a point is represented in its floating-point
Cartesian representation and its logical representation; that is, the geometric operations and
entities used to create it. For example, a point p might be defined to be the point lying on
the line l, and having the same x-coordinate as a point q.

Thus, when a geometric primitive is being called, it is first computed using floating-point
arithmetic. If the computation result lies below a certain threshold, then the algorithm
recompute the primitive using exact arithmetic. This might require computing the exact
representation of the points and lines used in this primitive. While in general this is worse
than arithmetic filtering, it performs better in our scenario, as the depth of computation of
vertices and edges in planar arrangement is bounded.

Furthermore, since this representation perseveres the combinatorial information, one can
use this information to resolve geometric decisions without resorting to exact arithmetic.
For example, consider a point p that is defined to be the intersection point between the
lines l1, l2, and the algorithm calls a primitive isOnLine to decide if p lies on the line l1.
Here, after the floating-point predicate had failed, the predicate decides using the logical
representation of p = l1 ∩ l2 that it lies on l1, and thus it return true.

Note, this is a scenario where arithmetic filtering will perform badly, for in this case
the arithmetic filtering will first carry out the computations using floating-point arithmetic,
and after those operations fail the computations will be reperformed using higher level of
precision, using some kind of a gap-bound so that it resolves the predicate correctly.

We refer to the above approach as geometric filtering. It seems to be the most natural
approach to the problem of robustness, although the considerable benefits of this approach
in practice are not widely known. For example, in the case of the algorithms of [AHH+99],
the usage of geometric-filtering speeded up the algorithms by a factor of 2-3. In practice,
virtually all computations are performed using floating-point arithmetic, and only negligible
part of the computations resort to exact arithmetic.

A very similar idea was recently implemented by Funke and Mehlhorn [FM00]. For
further details, about our approach, see [Har00b].
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CompZoneOnline CompZonePoly
Input lines # faces # time nodes # nodes created time nodes #
test 42 26 0.053 383 457 0.009 203
reg2000 2,004 667 1.449 17,651 21,419 0.228 6,735
rgl2000 2,004 6,271 6.331 93,729 117,324 0.890 36,853
rnd2000 2,004 1,411 1.458 25,072 32,064 0.295 9,844
zon2000 2,004 11,803 10.754 191,089 245,602 1.857 75,067
big2000 2,004 1 1.215 11,649 15,409 0.662 6,779
reg8000 8,004 2,664 6.122 70,409 85,376 1.007 26,841
zon8000 8,002 47,411 49.252 811,471 1,039,358 8.551 318,637
big8000 8,004 1 5.150 46,965 62,184 2.845 27,344

Table 1: Results for the two implemntations. Running times are in seconds. The number of
nodes created by CompZoneOnline is considerably larger than the final number of nodes in
the resulting DAG, as the algorithm merge nodes during its execution.

5.2 Empirical Results

The testing was carried out using the inputs of [AHH+99], and the results are depicted in
Table 1. The tests were performed on a dual Pentium II 450MhZ with 512MB memory using
Linux. Each entry in the table is the average of 25 executions of the program on this input.
As can be seen from the table, CompZoneOnline is considerably slower (by a factor 2–8).
than CompZonePoly.

The disappointing performance provided by CompZoneOnline is mainly caused by to the
expensive Expand operations (involving repeated point-location queries in the DAG). Of
course, CompZonePoly does not perform Expand operations. Furthermore, as testified by
Table 1, the usage of vertical trapezoids by CompZoneOnline is inherently inefficient as it
blows up the number of nodes in the associated history structure by a factor of 2–3 compared
to the number of nodes created by CompZonePoly.

In addition, the implementation of CompZonePoly associates with each line l in the conflict
list of a region P , the two edges of ∂P that l intersects. When computing the conflict lists
of the children of the node that corresponds to P , one can sometimes compute what conflict
lists l belongs to, without executing a single geometric primitive. It is not clear how one
can implement a similarly efficient scheme for the computation of the conflict lists of vertical
trapezoids.

6 Conclusions

In this paper we have presented a new randomized algorithm for computing a zone in a
planar arrangement, in an online fashion. This algorithm is the first efficient algorithm for
the case of planar arcs, it performs faster (by nearly a logarithmic factor) than the algorithm
of [OvL81] for the case of lines and for the case of an x-monotone walk in an arrangement of
segments, and it is considerably simpler. (It is also faster and much simpler than the recent
algorithm of [Cha99a].) We also presented an efficient randomized algorithm for computing
a level in an arrangement of arcs in the plane, whose expected running time is faster than
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any previous algorithm for this problem.
The main result of this paper relies on the application of point-location queries to compute

the relevant parts of an “off-line” structure (i.e., the history DAG). The author believes that
this technique should have additional applications. In particular, this approach might be
useful also for algorithms in higher dimensions. We leave this as an open question for further
research.

Although the resulting algorithm seems to be only a minor variant of previous algorithms
[dBDS95, CEG+93], the author believes that the new algorithm supersede those algorithms:
(i) Implementing the new algorithm was quite easy and does not require any advanced data-
structure. In particular, since the algorithm does not keep geometric adjacency information
in the vertical decomposition (unlike previous algorithms) its implementation is thus con-
siderably easier. (ii) The algorithm only computes what it must compute, while [dBDS95]
performs a lot of redundant computations, and (iii) the algorithm provides a powerful data-
structure for online computation of parts of an arrangement, where the computation time is
the same as a randomized incremental algorithm that uses an oracle. This enables one to
compute a portion of an arrangement in a completely arbitrary order, in time identical to
the time spent by a optimal randomized incremental algorithm. See [HS01, HI00] for results
that use this observation.

It is somewhat surprising, that in most applications that uses Overmars and van Leeuwen
[OvL81] (or Chan [Cha99a] improvement) data-structure — which is more flexible than our
data-structures since it allows insertion and deletion — one can use our algorithm instead
and the resulting algorithms are always faster. See [HS01] for more details.

The empirical results testifies that this algorithm is practical, although it is slower than
the heuristic CompZonePoly we had also tested. We currently do not have any proof of per-
formance bounds for CompZonePoly, and we leave this as an question for further research.
Another striking conclusion from the empirical tests, is that using vertical decomposition in
practice, is not efficient as using polygons having constant complexity, see [AHH+99, Har00a]
for similar results. It seems that planar vertical-decomposition should be avoided in practice,
as they give inferior performance. An additional reason to avoid vertical-decompositions in
practice, is their vulnerability to degeneracies (for example, several vertices of the arrange-
ment having the save x-coordinate, etc). However, if one computes the zone in arrangement
of segments, or of general arcs, it seems that the usage of vertical trapezoids is most natural.
We believe that in such scenarios CompZoneOnline will perform reasonably well compared
to other algorithms.
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A Appendix - Pseudo-code for Subroutines of CompZoneOnline

Algorithm Split(v)
Input: A final node v in the partial history DAG T

begin
s← next(∆v), where ∆v is the trapezoid associated with the node v
L← SplitGeom(∆v, s),

where SplitGeom(∆v, s), as above, returns the collection of trapezoids
that cover ∆v, so that s does not intersect any of them in its interior.

for each τ ∈ L do
Create a new node w and attach it as a child of v in T .
Set ∆w to τ
Compute cl(∆w) from cl(∆v)
Compute next(∆w), the first element of cl(∆w)

end for
end Split

Figure 6: Splitting a final node in T and creating its children
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Algorithm PointLocateLeftCompatible(v, p, r)
Input: v - current node of T

p - query point
r - target rank of output trapezoid

Output: A transient trapezoid of rank r having p on its left splitter
begin

if rank(v) = r then
return v

if isTransient(v) then
v ← Expand(v)

if isLeaf(v) then
Split(v)

Let w be the child of v, so that ∆w contains p either in its interior
or on its left splitter

return PointLocateLeftCompatible( w, p, r )
end PointLocateLeftCompatible

Figure 7: Computing a transient trapezoid in T that is left “compatible” with an input
transient trapezoid, by carrying out a point-location query in T . The algorithm also uses a
symmetric routine PointLocateRightCompatible, whose code is omitted.
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Algorithm Expand(v)
Input: v - current transient leaf node of T
Output: A final node of T whose trapezoid contains ∆v

begin
if isF inal(∆v) then

return v
L← {v}

/* collect the sequence of transient trapezoids adjacent to each other
to the right of ∆v */

temp← v
while isTransientRightSplitter(∆temp) do

temp← PointLocateLeftCompatible( root(T ),
midPointRightSplitter( ∆temp), rank(∆temp) )

L← L ∪ {temp}
end while

/* Similarly collect the sequence of transient trapezoids to the left of ∆v */
temp← v
while isTransientLeftSplitter(∆temp) do

temp← PointLocateRightCompatible( root(T ),
midPointLeftSplitter( ∆temp), rank(∆temp) )

L← L ∪ {temp}
end while

∆←
⋃

u∈L ∆u

Compute cl(∆) and next(∆) from the conflict lists of the
nodes of L, using the global bit-vector technique.

Add a new leaf node x to the partial history DAG T , mark x as final,
and replace all nodes of L in T by x.

Set ∆x to ∆

return x
end Expand

Figure 8: Expanding a transient leaf trapezoid of T to a final trapezoid containing it
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Algorithm PointLocate( p, flag )
Input: p - a query point

flag - since p usually lies on the boundary of a trapezoid, flag
indicates the side of the splitter or arc that contains p
where the point location should take place

Output: The trapezoid of AVD(Ŝ) that contains p (in its interior
or on the appropriate edge dictated by flag)

begin
v ← root(T )

while ( cl(∆v) 6= ∅ ) do
Expand(v)
Split(v)
v ← child of v whose trapezoid contains p; if p lies on

the boundary of several children trapezoids, choose the one
that is compatible with flag

end while

return ∆v

end PointLocate

Figure 9: The function that performs a point-location query; that is, it computes the neces-
sary parts of the partial history DAG T , and returns the trapezoid of AVD(Ŝ) that contains
a query point.
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B Appendix - Taking a Walk in Ten Easy Figures

In this appendix we illustrate, step by step, the action of processing a single point-location
query by CompZoneOnline.
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Figure 10: The input for CompZoneOnline is the set of segments Ŝ = {1, 2, 3, 4}. We assume
that the algorithm uses the permutation S = (1, 2, 3, 4). We illustrate how CompZoneOnline

carries out a point-location query to compute the trapezoid of AVD(Ŝ) that contains the
point a. We assume that this is the first query processed by the algorithm.
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Figure 11: CompZoneOnline starts with the trapezoid ∆0 = R2 that corresponds to the root
of the partial DAG T .
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Figure 12: CompZoneOnline splits ∆0 by the segment next(∆0) = 1, and goes down in the
DAG into the new node that corresponds to the trapezoid ∆1. All children of ∆0 (including
∆1) are final.
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Figure 13: Since ∆1 is final, it is split by next(∆1) = 2 into four final subtrapezoids, and we
go down to the child ∆2 that contains a.
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Figure 14: CompZoneOnline splits ∆2 by next(∆2) = 3 into three subtrapezoids. Two
of them are final, and the third one, ∆3, that contains a is transient (its right splitter is
transient). We thus execute Expand(∆3), which performs a point-location query (with the
midpoint p of the right splitter). The point location goes down in the partial DAG, through
∆0 and ∆1, and reaches the (final) leaf that stores τ1. Since rank(∆3) = 3 and rank(τ1) = 2,
those two trapezoids are not compatible (this holds also because τ1 is final whereas ∆3 is
not), and the algorithm continues by further splitting τ1 by next(τ1) = 3.
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Figure 15: The splitting of τ1 creates three children τ2, τ3, τ4, of which τ2 and τ4 are final,
whereas τ3 is transient. CompZoneOnline goes down to the newly created τ3, which contains
p on its left splitter. Since τ3 is transient and rank(τ3) = rank(∆3), it is compatible with ∆3.
Since the right splitter of τ3 is final, and so is the (empty) left splitter of ∆3 the execution
of Expand(∆3) terminates.
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Figure 16: The trapezoids ∆3 and τ3, from the previous figure, are merged by
CompZoneOnline to form the final trapezoid ∆4. Since cl(∆4) is not empty, we split it
further by next(∆4) = 4.
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Figure 17: The splitting of ∆4 creates three children ∆5, τ5, τ6, of which τ5 and τ6 are final
whereas ∆5 is transient and contains a. CompZoneOnline goes into ∆5, and since it is
transient, CompZoneOnline calls Expand(∆5). A point-location query is performed, at the
midpoint q of the right splitter of ∆5. This query traverses in T the path (∆0, ∆1, τ1, τ4).
The (final) trapezoid τ4 is not compatible with ∆5 so it is further split by the segment
next(τ4) = 4.
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Figure 18: τ4 is split into τ7, τ8, τ9, of which only τ8 is transient. CompZoneOnline goes into
τ8, which contains q on its left splitter. This trapezoid is compatible with ∆5, and since
both the left splitter of ∆5 and the right splitter of τ8 are final, Expand(∆5) terminates and
merges both trapezoids.
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Figure 19: Voila! The newly formed final trapezoid ∆6 contains our query point a, and its
conflict list is empty. Thus, ∆6 is the trapezoid of AVD(Ŝ) that contains a, and is output as
such by CompZoneOnline.
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